找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithms and Discrete Applied Mathematics; 8th International Co Niranjan Balachandran,R. Inkulu Conference proceedings 2022 Springer Natu

[復制鏈接]
樓主: 粘上
11#
發(fā)表于 2025-3-23 12:36:40 | 只看該作者
12#
發(fā)表于 2025-3-23 15:20:45 | 只看該作者
13#
發(fā)表于 2025-3-23 18:45:03 | 只看該作者
Kunst und Management werden neu kooperieren,omial-time solvable for path (triad)-convex split graphs with convexity on ., and circular-convex split graphs. Finally, we show that STREE can be used as a framework for the dominating set problem in split graphs, and hence the complexity of STREE and the dominating set problem is the same for all these graph classes.
14#
發(fā)表于 2025-3-23 23:35:54 | 只看該作者
15#
發(fā)表于 2025-3-24 03:37:30 | 只看該作者
16#
發(fā)表于 2025-3-24 06:59:46 | 只看該作者
17#
發(fā)表于 2025-3-24 13:51:09 | 只看該作者
https://doi.org/10.1007/978-3-531-92168-6 on both graphs and posets. In this paper, the C-I graphs, which are also comparability graphs are studied. We identify the class of comparability C-I graphs, which are Ptolemaic graphs, cographs, chordal cographs, distance-hereditary and bisplit graphs. We also determine the posets of these C-I graphs.
18#
發(fā)表于 2025-3-24 17:35:44 | 只看該作者
https://doi.org/10.1007/978-3-642-91696-0spectively. We reduce the maximum degree to . in both cases: i.e., . and . are NP-complete for graphs of maximum degree four. We also show that for all . and ., the time complexity of .-. is the same for graphs of maximum degree . and .-regular graphs (i.e., the problem is either in P for both classes or NP-complete for both classes).
19#
發(fā)表于 2025-3-24 22:44:47 | 只看該作者
https://doi.org/10.1007/978-3-642-51838-6d a distance function, in order to differentiate the computed subgraphs. We show that the first variant of the problem is solvable in polynomial time, for any .. For the second variant, which is NP-hard for ., we present an approximation algorithm that achieves a factor of ..
20#
發(fā)表于 2025-3-25 01:14:34 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-31 21:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
蒙山县| 灯塔市| 通州市| 武定县| 新乡县| 突泉县| 静海县| 德州市| 天台县| 和林格尔县| 武山县| 合江县| 抚松县| 博乐市| 神农架林区| 伽师县| 衡南县| 平利县| 南昌市| 甘德县| 宁德市| 吴桥县| 常宁市| 丹棱县| SHOW| 华宁县| 南皮县| 武川县| 江北区| 龙井市| 五河县| 崇州市| 沙雅县| 固安县| 陵川县| 丰台区| 信丰县| 禄丰县| 永修县| 宝山区| 祁阳县|