找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithms and Data Structures; 4th International Wo Selim G. Akl,Frank Dehne,Nicola Santoro Conference proceedings 1995 Springer-Verlag Be

[復(fù)制鏈接]
樓主: polysomnography
61#
發(fā)表于 2025-4-1 02:10:36 | 只看該作者
https://doi.org/10.1007/978-3-642-97446-5 algorithms with a constant competitive ratio can be developed in this model. We also study distributed paging. We examine the . of this problem in which there exists only one copy of each page. We develop efficient deterministic and randomized on-line algorithms for this problem.
62#
發(fā)表于 2025-4-1 06:47:22 | 只看該作者
63#
發(fā)表于 2025-4-1 12:45:03 | 只看該作者
https://doi.org/10.1007/978-3-642-79240-3etric duality, topological sweep, interesting new properties concerning intersection and covering on the unit-sphere, and on techniques for efficiently constructing and searching an arrangement of polygons on the unit-sphere.
64#
發(fā)表于 2025-4-1 15:16:23 | 只看該作者
65#
發(fā)表于 2025-4-1 22:31:31 | 只看該作者
https://doi.org/10.1007/978-3-658-01451-3and robotics..After proving a ≈ 1.64 lower bound on the competitive ratio that can be achieved by on-line algorithms for OLTSP, two competitive algorithms are shown, one of which is 2-competitive and works for any metric space. The second one allows to achieve a nearly optimal competitive ratio of 1.75 on the real line.
66#
發(fā)表于 2025-4-2 01:01:11 | 只看該作者
67#
發(fā)表于 2025-4-2 03:18:22 | 只看該作者
Balanced distributed search trees do not exist,c upper bound cannot be achieved. This is true although each node is allowed to have arbitrary degree (note that in this case, the height of a single site search tree is trivially bounded by one). By proposing a method that generates trees of height ., we show the bound to be tight.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 04:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大渡口区| 曲沃县| 元阳县| 荣昌县| 塘沽区| 咸阳市| 淅川县| 四子王旗| 凤翔县| 丰台区| 丽水市| 徐水县| 舞阳县| 万山特区| 鱼台县| 盈江县| 清流县| 郧西县| 通江县| 台北县| 鹤山市| 赤壁市| 临高县| 宁陕县| 平塘县| 石城县| 汶上县| 颍上县| 星子县| 淮滨县| 邻水| 南江县| 南丰县| 梅河口市| 定远县| 旅游| 马关县| 合江县| 新郑市| 茌平县| 新晃|