找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithms and Data Structures; 11th International S Frank Dehne,Marina Gavrilova,Csaba D. Tóth Conference proceedings 2009 Springer-Verla

[復(fù)制鏈接]
樓主: Halcyon
51#
發(fā)表于 2025-3-30 10:42:09 | 只看該作者
,Die L?sung des Besch?ftigungsproblems,We show that every .-planar clustered graph admits a straight-line .-planar drawing in which each cluster is represented by an axis-parallel rectangle, thus solving a problem posed by Eades, Feng, Lin, and Nagamochi [.].
52#
發(fā)表于 2025-3-30 12:33:04 | 只看該作者
53#
發(fā)表于 2025-3-30 20:12:12 | 只看該作者
Straight-Line Rectangular Drawings of Clustered Graphs,We show that every .-planar clustered graph admits a straight-line .-planar drawing in which each cluster is represented by an axis-parallel rectangle, thus solving a problem posed by Eades, Feng, Lin, and Nagamochi [.].
54#
發(fā)表于 2025-3-30 21:02:29 | 只看該作者
Skip-Splay: Toward Achieving the Unified Bound in the BST Model,We present skip-splay, the first binary search tree algorithm known to have a running time that nearly achieves the unified bound. Skip-splay trees require only .(. lg lg .?+?.(.)) time to execute a query sequence .?=?.. ... ... The skip-splay algorithm is simple and similar to the splay algorithm.
55#
發(fā)表于 2025-3-31 03:06:00 | 只看該作者
56#
發(fā)表于 2025-3-31 05:06:14 | 只看該作者
Plane Graphs with Parity Constraints,beled either even or odd. A graph . on . satisfies the parity constraint of a point .?∈?., if the parity of the degree of . in . matches its label. In this paper we study how well various classes of planar graphs can satisfy arbitrary parity constraints. Specifically, we show that we can always find
57#
發(fā)表于 2025-3-31 12:15:26 | 只看該作者
Online Priority Steiner Tree Problems,s users. For instance, in QoS multicasting, a source needs to efficiently transmit a message to a set of receivers, each requiring support at a different QoS level (e.g., bandwidth). This can be formulated as the . problem: Here, each link of the underlying network is associated with a priority valu
58#
發(fā)表于 2025-3-31 16:38:06 | 只看該作者
59#
發(fā)表于 2025-3-31 18:40:29 | 只看該作者
60#
發(fā)表于 2025-3-31 23:49:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 10:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
金山区| 子长县| 乐亭县| 延川县| 从化市| 惠东县| 绥棱县| 弥勒县| 卢氏县| 定南县| 施甸县| 鹤山市| 芮城县| 巴塘县| 临邑县| 吴忠市| 仁寿县| 乌拉特后旗| 沁阳市| 阳原县| 南靖县| 贵阳市| 朔州市| 西华县| 岳西县| 琼海市| 韩城市| 遂昌县| 长岛县| 连州市| 普兰县| 西吉县| 宾阳县| 诸暨市| 常熟市| 封丘县| 增城市| 石景山区| 应城市| 林甸县| 永定县|