找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithms and Computation; 20th International S Yingfei Dong,Ding-Zhu Du,Oscar Ibarra Conference proceedings 2009 Springer-Verlag Berlin H

[復制鏈接]
樓主: Capricious
21#
發(fā)表于 2025-3-25 05:00:33 | 只看該作者
https://doi.org/10.1007/978-3-662-39552-3 between every two of these points that are sufficiently close. Given two proteins represented this way, our problem is to find a subset of points from each protein, and a bijective matching of points between these two subsets, with the objective of maximizing either (A) the size of the subsets (LCP
22#
發(fā)表于 2025-3-25 11:07:39 | 只看該作者
Der Mathematikunterricht in der Primarstufeame set of rectangles exists. In this paper, we use it to show the existence of a polynomial-time approximation scheme for 2-dimensional geometric knapsack in the case where the range of the profit to area ratio of the rectangles is bounded by a constant. As a corollary, we get an approximation sche
23#
發(fā)表于 2025-3-25 14:28:41 | 只看該作者
24#
發(fā)表于 2025-3-25 18:59:40 | 只看該作者
25#
發(fā)表于 2025-3-25 20:18:48 | 只看該作者
26#
發(fā)表于 2025-3-26 03:20:15 | 只看該作者
27#
發(fā)表于 2025-3-26 06:21:21 | 只看該作者
Das Verbraucherschutzstrafrechtor any convex body . in the plane, the average distance from the Fermat-Weber center of . to the points of . is larger than ., where Δ(.) is the diameter of .. This proves a conjecture of Carmi, Har-Peled and Katz. From the other direction, we prove that the same average distance is at most .. The n
28#
發(fā)表于 2025-3-26 12:32:43 | 只看該作者
https://doi.org/10.1007/978-3-662-29153-5dy this problem in a more general setting. We consider the generalized problem which tries to resolve set .?=?{..,..,???,..} from pairwise function values {.(..,..) | 1?≤?., .?≤?.} for a given bivariate function .. We call this problem the . problem. Our results include efficient algorithms when . i
29#
發(fā)表于 2025-3-26 15:55:23 | 只看該作者
30#
發(fā)表于 2025-3-26 17:54:45 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-10 21:20
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
台北县| 措美县| 嘉祥县| 抚顺市| 夹江县| 寻甸| 息烽县| 宿州市| 兴国县| 云南省| 桂平市| 古交市| 田阳县| 新竹县| 铅山县| 合江县| 阜平县| 烟台市| 都匀市| 基隆市| 林口县| 杭锦旗| 姜堰市| 湛江市| 天柱县| 宜宾县| 库车县| 苏尼特左旗| 句容市| 杭锦旗| 陵川县| 江西省| 乌拉特前旗| 丽水市| 莆田市| 天门市| 社旗县| 章丘市| 奉新县| 抚远县| 盘锦市|