找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithms and Computation; 5th International Sy Ding-Zhu Du,Xiang-Sun Zhang Conference proceedings 1994 Springer-Verlag Berlin Heidelberg

[復(fù)制鏈接]
樓主: Intimidate
11#
發(fā)表于 2025-3-23 12:06:48 | 只看該作者
12#
發(fā)表于 2025-3-23 17:03:19 | 只看該作者
Analysis of the convergency of topology preserving neural networks on learning,n to produce convergent feature maps for uniformly distributed inputs. As a special example, the Kohonen‘s self organizing networks are also proven to be convergent. This paper revises and extends the products in existance and provids a new method for further studying the convergence properties of s
13#
發(fā)表于 2025-3-23 21:39:02 | 只看該作者
14#
發(fā)表于 2025-3-23 22:41:27 | 只看該作者
15#
發(fā)表于 2025-3-24 02:25:59 | 只看該作者
16#
發(fā)表于 2025-3-24 08:07:18 | 只看該作者
17#
發(fā)表于 2025-3-24 14:20:09 | 只看該作者
18#
發(fā)表于 2025-3-24 16:45:29 | 只看該作者
On random hard sets for NP,The problem of whether NP has a random hard set (i.e., a set in RAND) is investigated. We show that for all recursive oracle . such that P. ≠ NP., NP. has no hard set in RAND. On the other hand, we also show that for almost all oracle ., P. ≠ NP. and NP. has a hard set in RAND.
19#
發(fā)表于 2025-3-24 20:40:59 | 只看該作者
20#
發(fā)表于 2025-3-25 01:05:57 | 只看該作者
Every set of disjoint line segments admits a binary tree,each line segment is an edge of the tree, the tree has no crossing edges, and the maximum vertex degree of the tree is 3. Furthermore, there exist configurations of line segments where any such tree requires at least degree 3. We provide an .(. log .) time algorithm for constructing such a tree, and show that this is optimal.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 19:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
车险| 梁河县| 华坪县| 高碑店市| 无为县| 玉溪市| 英德市| 防城港市| 开封县| 桦甸市| 康定县| 罗田县| 怀宁县| 吉木萨尔县| 平罗县| 沅陵县| 丰宁| 华亭县| 南康市| 崇左市| 凌海市| 会东县| 溧阳市| 荔浦县| 湄潭县| 满洲里市| 清镇市| 赫章县| 隆子县| 宁蒗| 大安市| 龙山县| 贵溪市| 涟水县| 黎川县| 濮阳县| 通海县| 桓台县| 建昌县| 永和县| 安平县|