找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithms and Computation; 8th International Sy Hon Wai Leong,Hiroshi Imai,Sanjay Jain Conference proceedings 1997 Springer-Verlag Berlin

[復(fù)制鏈接]
樓主: satisficer
21#
發(fā)表于 2025-3-25 06:11:27 | 只看該作者
Rechnungswesen und Unternehmensüberwachungof . such that, for each edge {.} of . contains a path between . and .. We say that a set of paths . is .-colorable if each path of . can be colored by one of the . colors so that the paths of the same color are edge disjoint (each edge of . appears at most once in the paths of each single color). L
22#
發(fā)表于 2025-3-25 10:11:07 | 只看該作者
23#
發(fā)表于 2025-3-25 14:39:28 | 只看該作者
24#
發(fā)表于 2025-3-25 18:50:19 | 只看該作者
Grundlagen des Konzernabschlusses,nsider the problem of augmenting . by the smallest number of new edges so that the edge-connectivity and vertex connectivity between every pair . become at least .. (.) and ..,(.), respectively, in the resulting graph .′. In this paper, we show that the problem can be solved in polynomial time if ..
25#
發(fā)表于 2025-3-25 20:35:25 | 只看該作者
26#
發(fā)表于 2025-3-26 00:37:41 | 只看該作者
27#
發(fā)表于 2025-3-26 06:30:41 | 只看該作者
28#
發(fā)表于 2025-3-26 09:57:57 | 只看該作者
Der Konzerndatenschutzbeauftragte. A . (.) is a graph for which the vertices are the pseudo-lines of . and the edges are some un-ordered pairs of pseudo-lines of .. A . of pseudo-line graph (.) is a pair of edges .), .) ∈ ., (.) ∩ . = 0, such that the crossing point of the pseudo-lines . and . lies vertically between . and . and th
29#
發(fā)表于 2025-3-26 13:06:39 | 只看該作者
30#
發(fā)表于 2025-3-26 18:06:05 | 只看該作者
Kopfschmerz bei Infektionskrankheiten, of the weights of the satisfied clauses. In this paper, we present a theoretical framewok of hybrid approaches combining the algorithms of Goemans-Williamson and Yannakakis. This framework leads to a unified analysis of the performance guarantees of proposed algorithms and also leads to a better ap
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 10:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
澄江县| 乐都县| 乃东县| 南和县| 四子王旗| 洞口县| 通道| 汕头市| 南康市| 罗山县| 游戏| 筠连县| 信阳市| 沽源县| 得荣县| 古交市| 昭平县| 清徐县| 肃北| 栾川县| 南江县| 河间市| 化州市| 托里县| 榆树市| 清苑县| 绥芬河市| 清涧县| 万全县| 绍兴市| 封丘县| 许昌县| 云安县| 易门县| 龙川县| 江西省| 会昌县| 城口县| 北海市| 庄浪县| 北京市|