找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithms and Classification in Combinatorial Group Theory; Gilbert Baumslag,Charles F. Miller Book 1992 Springer-Verlag New York, Inc. 1

[復(fù)制鏈接]
樓主: Mottled
31#
發(fā)表于 2025-3-26 23:02:52 | 只看該作者
32#
發(fā)表于 2025-3-27 01:36:46 | 只看該作者
A Tour Around Finitely Presented Infinite Simple Groups,mples of infinite simple groups. For example, let .. be any non-trivial torsion free group. Then, by [3], there exists a torsion free group C., containing .., in which the non-trivial elements of .. are all conjugate to each other. For . ∈ ? define ... = C. and let . = ∪.C.. Then . is an infinite si
33#
發(fā)表于 2025-3-27 08:47:03 | 只看該作者
34#
發(fā)表于 2025-3-27 09:40:30 | 只看該作者
The Geometry of Rewriting Systems: A Proof of the Anick-Groves-Squier Theorem,ssifying space of . down to a quotient complex (typically “small”) of the same homotopy type. If the rewriting system is finite, then the quotient complex has only finitely many cells in each dimension. The proof yields an explicit free resolution of . over .., similar to resolutions obtained by Ani
35#
發(fā)表于 2025-3-27 17:32:11 | 只看該作者
36#
發(fā)表于 2025-3-27 17:54:54 | 只看該作者
37#
發(fā)表于 2025-3-27 22:37:24 | 只看該作者
Problems on Automatic Groups,s merely to establish a time and a first speaker, Bill Thurston soon took the floor and one after another of the participants proposed questions on automatic groups, none of which could be answered at that time. It seemed worthwhile to record those questions asked as a guide to research into automat
38#
發(fā)表于 2025-3-28 04:27:19 | 只看該作者
Algorithms and Classification in Combinatorial Group Theory
39#
發(fā)表于 2025-3-28 08:08:57 | 只看該作者
40#
發(fā)表于 2025-3-28 10:39:52 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 23:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
甘泉县| 南投县| 白朗县| 凤庆县| 宿松县| 杭州市| 钟祥市| 双柏县| 万载县| 荆州市| 永昌县| 大丰市| 南充市| 霍山县| 府谷县| 和林格尔县| 乌鲁木齐县| 山东| 鱼台县| 阿拉善左旗| 米易县| 扎赉特旗| 江永县| 鹿泉市| 靖宇县| 宁明县| 白河县| 宁陕县| 施秉县| 天镇县| 繁昌县| 安丘市| 龙泉市| 三台县| 潜江市| 赫章县| 福清市| 南江县| 三穗县| 台北县| 广西|