找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithms and Architectures for Parallel Processing; 18th International C Jaideep Vaidya,Jin Li Conference proceedings 2018 Springer Natur

[復(fù)制鏈接]
查看: 49988|回復(fù): 67
樓主
發(fā)表于 2025-3-21 18:28:59 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Algorithms and Architectures for Parallel Processing
期刊簡稱18th International C
影響因子2023Jaideep Vaidya,Jin Li
視頻videohttp://file.papertrans.cn/154/153087/153087.mp4
學(xué)科分類Lecture Notes in Computer Science
圖書封面Titlebook: Algorithms and Architectures for Parallel Processing; 18th International C Jaideep Vaidya,Jin Li Conference proceedings 2018 Springer Natur
影響因子.The four-volume set LNCS 11334-11337 constitutes the?proceedings of the 18th International Conference on Algorithms and Architectures for Parallel Processing, ICA3PP 2018, held in Guangzhou, China, in November 2018..The 141 full and 50 short papers presented?were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections on Distributed and Parallel Computing; High Performance Computing; Big Data and Information Processing; Internet of Things and Cloud Computing; and Security and Privacy in Computing..
Pindex Conference proceedings 2018
The information of publication is updating

書目名稱Algorithms and Architectures for Parallel Processing影響因子(影響力)




書目名稱Algorithms and Architectures for Parallel Processing影響因子(影響力)學(xué)科排名




書目名稱Algorithms and Architectures for Parallel Processing網(wǎng)絡(luò)公開度




書目名稱Algorithms and Architectures for Parallel Processing網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Algorithms and Architectures for Parallel Processing被引頻次




書目名稱Algorithms and Architectures for Parallel Processing被引頻次學(xué)科排名




書目名稱Algorithms and Architectures for Parallel Processing年度引用




書目名稱Algorithms and Architectures for Parallel Processing年度引用學(xué)科排名




書目名稱Algorithms and Architectures for Parallel Processing讀者反饋




書目名稱Algorithms and Architectures for Parallel Processing讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:07:34 | 只看該作者
Adaptive Data Sampling Mechanism for Process Objectve to the current underlying distribution of data in data stream. For finding appropriate data in big data stream to model process object, an adaptive data sampling mechanism is proposed in this paper. Experiments demonstrate the effectiveness of the proposed adaptive data sampling mechanism for process object.
板凳
發(fā)表于 2025-3-22 03:18:28 | 只看該作者
地板
發(fā)表于 2025-3-22 04:57:39 | 只看該作者
5#
發(fā)表于 2025-3-22 08:54:46 | 只看該作者
0302-9743 lected from numerous submissions. The papers are organized in topical sections on Distributed and Parallel Computing; High Performance Computing; Big Data and Information Processing; Internet of Things and Cloud Computing; and Security and Privacy in Computing..978-3-030-05050-4978-3-030-05051-1Series ISSN 0302-9743 Series E-ISSN 1611-3349
6#
發(fā)表于 2025-3-22 15:13:28 | 只看該作者
Bürgergesellschaft und Demokratie a scalable structure to record the access information of the vertices on each machine. Second, we prune unnecessary inter-machine communication for previously accessed vertices by checking the records. Evaluation results show that the performance of our method is at least six times higher than that of the original implementation of parallel BFS.
7#
發(fā)表于 2025-3-22 21:04:29 | 只看該作者
8#
發(fā)表于 2025-3-22 21:21:10 | 只看該作者
PruX: Communication Pruning of Parallel BFS in the Graph 500 Benchmark a scalable structure to record the access information of the vertices on each machine. Second, we prune unnecessary inter-machine communication for previously accessed vertices by checking the records. Evaluation results show that the performance of our method is at least six times higher than that of the original implementation of parallel BFS.
9#
發(fā)表于 2025-3-23 05:10:45 | 只看該作者
https://doi.org/10.1007/978-3-322-84276-3s the fastest in computing speed benefiting from its optimization for CPU, but it suffers from long communication delay due to the dependency on MapReduce framework. The insights and conclusions from our evaluation provides significant reference for improving resource utility of supercomputer resources in distributed deep learning.
10#
發(fā)表于 2025-3-23 07:34:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 09:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
海安县| 绥德县| 五华县| 达州市| 汉阴县| 长岛县| 镇平县| 金秀| 东明县| 余江县| 固安县| 台前县| 合肥市| 子长县| 四平市| 岳阳市| 永仁县| 柞水县| 安国市| 莱州市| 苍梧县| 区。| 饶河县| 白玉县| 新闻| 扶沟县| 当雄县| 五峰| 全椒县| 仁寿县| 盈江县| 阳江市| 兴安县| 成武县| 江山市| 新泰市| 沂源县| 望谟县| 长兴县| 诸暨市| 乌鲁木齐市|