找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithms and Architectures for Parallel Processing; 18th International C Jaideep Vaidya,Jin Li Conference proceedings 2018 Springer Natur

[復(fù)制鏈接]
查看: 30601|回復(fù): 62
樓主
發(fā)表于 2025-3-21 16:09:45 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Algorithms and Architectures for Parallel Processing
期刊簡稱18th International C
影響因子2023Jaideep Vaidya,Jin Li
視頻videohttp://file.papertrans.cn/154/153068/153068.mp4
學(xué)科分類Lecture Notes in Computer Science
圖書封面Titlebook: Algorithms and Architectures for Parallel Processing; 18th International C Jaideep Vaidya,Jin Li Conference proceedings 2018 Springer Natur
影響因子.The four-volume set LNCS 11334-11337 constitutes the?proceedings of the 18th International Conference on Algorithms and Architectures for Parallel Processing, ICA3PP 2018, held in Guangzhou, China, in November 2018..The 141 full and 50 short papers presented?were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections on Distributed and Parallel Computing; High Performance Computing; Big Data and Information Processing; Internet of Things and Cloud Computing; and Security and Privacy in Computing..
Pindex Conference proceedings 2018
The information of publication is updating

書目名稱Algorithms and Architectures for Parallel Processing影響因子(影響力)




書目名稱Algorithms and Architectures for Parallel Processing影響因子(影響力)學(xué)科排名




書目名稱Algorithms and Architectures for Parallel Processing網(wǎng)絡(luò)公開度




書目名稱Algorithms and Architectures for Parallel Processing網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Algorithms and Architectures for Parallel Processing被引頻次




書目名稱Algorithms and Architectures for Parallel Processing被引頻次學(xué)科排名




書目名稱Algorithms and Architectures for Parallel Processing年度引用




書目名稱Algorithms and Architectures for Parallel Processing年度引用學(xué)科排名




書目名稱Algorithms and Architectures for Parallel Processing讀者反饋




書目名稱Algorithms and Architectures for Parallel Processing讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:01:35 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:53:09 | 只看該作者
地板
發(fā)表于 2025-3-22 08:26:19 | 只看該作者
Reliable Content Delivery in Lossy Named Data Networks Based on Network Codinge the number of packets retransmitted in lossy NDN networks. Extensive real physical emulation shows that network coding reduces the number of packet retransmission and improves the reliability of content delivery in lossy NDN networks.
5#
發(fā)表于 2025-3-22 11:08:09 | 只看該作者
6#
發(fā)表于 2025-3-22 16:41:51 | 只看該作者
Harden Tamper-Proofing to Combat MATE Attackciency since it only introduces the constant extra cost of time and space. We deploy our work on SPECint-2006 benchmark suit. The experimental results demonstrate our scheme is light-weight for computation and storage.
7#
發(fā)表于 2025-3-22 20:17:04 | 只看該作者
A Fast and Effective Detection of Mobile Malware Behavior Using Network Trafficic, which can quickly and effectively detect malware behavior. We first employ the traffic collection platform to collect network traffic generated by various apps. After preprocessing (filtering and aggregating) the collected network traffic data, we get a large number of TCP flows. Next we extract
8#
發(fā)表于 2025-3-22 22:50:58 | 只看該作者
A Scalable Pthreads-Compatible Thread Model for VM-Intensive Programs16 cores than Pthreads. Moreover, by using Linux Perf, we further analyze critical bottlenecks that limit the scalability of workloads programmed by Pthreads. This paper also reviews the performance impact of the latest Linux 4.10 kernel optimization on . and Pthreads, and results show that . still
9#
發(fā)表于 2025-3-23 05:01:31 | 只看該作者
Identifying Bitcoin Users Using Deep Neural Networkcognition and clustering, where the implementation relies directly on the distance between address feature vectors..We set up an address-user pairing dataset with extensive collections and careful sanitation. We tested our method using the dataset and proved its efficiency. In contrast to heuristic-
10#
發(fā)表于 2025-3-23 09:26:11 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 13:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
贺兰县| 高密市| 临江市| 中超| 偃师市| 林芝县| 黄浦区| 仙居县| 濉溪县| 嘉善县| 嫩江县| 涞水县| 通化市| 武鸣县| 义马市| 磐安县| 昌乐县| 巴楚县| 庄浪县| 伽师县| 当涂县| 佛冈县| 嘉兴市| 昌江| 宁陵县| 昭觉县| 邵阳县| 科技| 环江| 都昌县| 佛教| 鸡泽县| 京山县| 夏河县| 鲜城| 菏泽市| 富川| 彭阳县| 睢宁县| 县级市| 宜春市|