找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithms and Architectures for Parallel Processing; 20th International C Meikang Qiu Conference proceedings 2020 Springer Nature Switzerl

[復(fù)制鏈接]
樓主: AMUSE
11#
發(fā)表于 2025-3-23 11:17:08 | 只看該作者
12#
發(fā)表于 2025-3-23 17:54:03 | 只看該作者
Design of a Convolutional Neural Network Instruction Set Based on RISC-V and Its Microarchitecture Iur work on the broadly used CNN model, LeNet-5, on Field Programmable Gate Arrays (FPGA) for the correctness validation. Comparing to traditional x86 and MIPS ISAs, our design provides a higher code density and performance efficiency.
13#
發(fā)表于 2025-3-23 21:31:43 | 只看該作者
14#
發(fā)表于 2025-3-23 22:53:19 | 只看該作者
QoS-Aware and Fault-Tolerant Replica Placementient heuristic algorithms. Finally the proposed algorithms are evaluated with extensive network configurations and the experimental results show that the proposed heuristic algorithms can generate solutions very close to the optimal results.
15#
發(fā)表于 2025-3-24 05:35:54 | 只看該作者
16#
發(fā)表于 2025-3-24 10:33:44 | 只看該作者
A Novel Clustering-Based Filter Pruning Method for Efficient Deep Neural Networkss of our approach with several network models, including VGG and ResNet. Experimental results show that on CIFAR-10, our method reduces inference costs for VGG-16 by up?to 44% and ResNet-32 by up?to 50%, while the accuracy can regain close to the original level.
17#
發(fā)表于 2025-3-24 11:55:08 | 只看該作者
18#
發(fā)表于 2025-3-24 16:25:32 | 只看該作者
https://doi.org/10.1007/978-3-662-58194-0minal devices. Experiments have revealed the characteristics of components execution in the proposed architecture, showing that the system can improve computing performance under the real-world unstable network environments.
19#
發(fā)表于 2025-3-24 22:51:56 | 只看該作者
Edge-Assisted Federated Learning: An Empirical Study from Software Decomposition Perspective We conduct an empirical study on a classic convolutional neural network to validate our framework. Experiments show that this method can effectively shorten the time cost for mobile terminals to perform local training in the federated learning process.
20#
發(fā)表于 2025-3-25 00:59:10 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 18:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
班戈县| 琼结县| 宜城市| 乌兰县| 建阳市| 湟源县| 陕西省| 广饶县| 长兴县| 双鸭山市| 章丘市| 灯塔市| 上饶县| 信宜市| 漳平市| 阳春市| 和龙市| 和林格尔县| 兖州市| 木里| 扎鲁特旗| 浮梁县| 瑞金市| 子洲县| 诏安县| 昂仁县| 乌拉特后旗| 焦作市| 海丰县| 白河县| 页游| 靖安县| 方城县| 习水县| 吉木乃县| 常山县| 廉江市| 清涧县| 元阳县| 南木林县| 延长县|