找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithmic Topology and Classification of 3-Manifolds; Sergei Matveev Textbook 2007Latest edition Springer-Verlag Berlin Heidelberg 2007

[復制鏈接]
查看: 38127|回復: 37
樓主
發(fā)表于 2025-3-21 19:42:07 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Algorithmic Topology and Classification of 3-Manifolds
影響因子2023Sergei Matveev
視頻videohttp://file.papertrans.cn/154/153011/153011.mp4
發(fā)行地址Includes supplementary material:
學科分類Algorithms and Computation in Mathematics
圖書封面Titlebook: Algorithmic Topology and Classification of 3-Manifolds;  Sergei Matveev Textbook 2007Latest edition Springer-Verlag Berlin Heidelberg 2007
影響因子.From the reviews of the 1st edition:.."This book provides a comprehensive and detailed account of different topics in algorithmic 3-dimensional topology, culminating with the recognition procedure for Haken manifolds and including the up-to-date results in computer enumeration of 3-manifolds. Originating from lecture notes of various courses given by the author over a decade, the book is intended to combine the pedagogical approach of a graduate textbook (without exercises) with the completeness and reliability of a research monograph…..All the material, with few exceptions, is presented from the peculiar point of view of special polyhedra and special spines of 3-manifolds. This choice contributes to keep the level of the exposition really elementary. ..In conclusion, the reviewer subscribes to the quotation from the back cover: "the book fills a gap in the existing literature and will become a standard reference for algorithmic 3-dimensional topology both for graduate students and researchers". ..Zentralblatt für Mathematik 2004..For this 2.nd. edition, new results, new proofs, and commentaries for a better orientation of the reader have been added. In particular, in Chapter 7 se
Pindex Textbook 2007Latest edition
The information of publication is updating

書目名稱Algorithmic Topology and Classification of 3-Manifolds影響因子(影響力)




書目名稱Algorithmic Topology and Classification of 3-Manifolds影響因子(影響力)學科排名




書目名稱Algorithmic Topology and Classification of 3-Manifolds網(wǎng)絡公開度




書目名稱Algorithmic Topology and Classification of 3-Manifolds網(wǎng)絡公開度學科排名




書目名稱Algorithmic Topology and Classification of 3-Manifolds被引頻次




書目名稱Algorithmic Topology and Classification of 3-Manifolds被引頻次學科排名




書目名稱Algorithmic Topology and Classification of 3-Manifolds年度引用




書目名稱Algorithmic Topology and Classification of 3-Manifolds年度引用學科排名




書目名稱Algorithmic Topology and Classification of 3-Manifolds讀者反饋




書目名稱Algorithmic Topology and Classification of 3-Manifolds讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 23:50:59 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:21:25 | 只看該作者
https://doi.org/10.1007/978-3-662-39674-2The theory of normal surfaces is used extensively in algorithmic topology. Algorithms based on it most often follow the General Scheme described below. Suppose that we wish to solve a problem about a given 3-manifold ..
地板
發(fā)表于 2025-3-22 05:35:17 | 只看該作者
5#
發(fā)表于 2025-3-22 11:24:27 | 只看該作者
Haken Theory of Normal Surfaces,Normal surfaces were introduced by Kneser in 1929 [66]. The theory of normal surfaces was further developed by W. Haken in the early 1960s [38]. Its fundamental importance to the algorithmic topology cannot be overestimated. Most of the work on 3-manifolds since then is based on or related to it.
6#
發(fā)表于 2025-3-22 16:43:51 | 只看該作者
Applications of the Theory of Normal Surfaces,The theory of normal surfaces is used extensively in algorithmic topology. Algorithms based on it most often follow the General Scheme described below. Suppose that we wish to solve a problem about a given 3-manifold ..
7#
發(fā)表于 2025-3-22 18:57:47 | 只看該作者
8#
發(fā)表于 2025-3-23 00:22:56 | 只看該作者
9#
發(fā)表于 2025-3-23 04:43:35 | 只看該作者
10#
發(fā)表于 2025-3-23 06:08:40 | 只看該作者
Sergei MatveevIncludes supplementary material:
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 16:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
时尚| 三江| 宜昌市| 开鲁县| 双城市| 新丰县| 万盛区| 遂宁市| 虞城县| 琼海市| 盘锦市| 秭归县| 扶风县| 连城县| 柳林县| 泾阳县| 抚宁县| 仁化县| 永善县| 乾安县| 峨眉山市| 安平县| 修武县| 南华县| 隆尧县| 莱西市| 昌宁县| 白银市| 东至县| 泰宁县| 洛川县| 独山县| 和静县| 龙胜| 瑞丽市| 会东县| 内丘县| 新宾| 申扎县| 衡阳县| 浦北县|