找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithmic Number Theory; Third International Joe P. Buhler Conference proceedings 1998 Springer-Verlag Berlin Heidelberg 1998 Analysis.P

[復制鏈接]
查看: 7373|回復: 68
樓主
發(fā)表于 2025-3-21 18:37:30 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Algorithmic Number Theory
期刊簡稱Third International
影響因子2023Joe P. Buhler
視頻videohttp://file.papertrans.cn/154/153003/153003.mp4
學科分類Lecture Notes in Computer Science
圖書封面Titlebook: Algorithmic Number Theory; Third International  Joe P. Buhler Conference proceedings 1998 Springer-Verlag Berlin Heidelberg 1998 Analysis.P
影響因子This book constitutes the refereed proceedings of the Third International Symposium on Algorithmic Number Theory, ANTS-III, held in Portland, Oregon, USA, in June 1998..The volume presents 46 revised full papers together with two invited surveys. The papers are organized in chapters on gcd algorithms, primality, factoring, sieving, analytic number theory, cryptography, linear algebra and lattices, series and sums, algebraic number fields, class groups and fields, curves, and function fields.
Pindex Conference proceedings 1998
The information of publication is updating

書目名稱Algorithmic Number Theory影響因子(影響力)




書目名稱Algorithmic Number Theory影響因子(影響力)學科排名




書目名稱Algorithmic Number Theory網(wǎng)絡公開度




書目名稱Algorithmic Number Theory網(wǎng)絡公開度學科排名




書目名稱Algorithmic Number Theory被引頻次




書目名稱Algorithmic Number Theory被引頻次學科排名




書目名稱Algorithmic Number Theory年度引用




書目名稱Algorithmic Number Theory年度引用學科排名




書目名稱Algorithmic Number Theory讀者反饋




書目名稱Algorithmic Number Theory讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 22:52:02 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:51:56 | 只看該作者
On the performance of signature schemes based on elliptic curves,ractical sizes of fields and moduli, GF(.) is roughly twice as fast as GF(2.). Furthermore, the speed of ECDSA over GF(.) is similar to the speed of DSA; it is approximately 7 times faster than RSA for signing, and 40 times slower than RSA for verification (with public exponent 3).
地板
發(fā)表于 2025-3-22 07:52:54 | 只看該作者
Shimura curve computations,se methods by working out several examples in varying degrees of detail. For instance, we compute coordinates for all the rational CM points on the curves . .(1) associated with the quaternion algebras over . ramified at {2,3}, {2,5}, {2,7}, and {3,5}. We conclude with a list of open questions that
5#
發(fā)表于 2025-3-22 09:43:44 | 只看該作者
,Parallel implementation of Sch?nhage’s integer GCD algorithm,d GCD algorithm..Experiments on sequential architectures show that Sch?nhage‘s algorithm overcomes other GCD algorithms implemented in two well known multiple-precision packages for input sizes larger than about 50000 bytes. In the extended case this threshold drops to 10000 bytes. In these input ra
6#
發(fā)表于 2025-3-22 15:55:46 | 只看該作者
7#
發(fā)表于 2025-3-22 18:11:19 | 只看該作者
8#
發(fā)表于 2025-3-22 22:10:59 | 只看該作者
Primality proving using elliptic curves: An update,oldwasser and Kilian on the one hand, and Atkin on the other. The latter algorithm uses the theory of complex multiplication. The algorithm, now called ECPP, has been used for nearly ten years. The purpose of this paper is to give an account of the recent theoretical and practical improvements of EC
9#
發(fā)表于 2025-3-23 02:57:35 | 只看該作者
10#
發(fā)表于 2025-3-23 07:24:03 | 只看該作者
A Montgomery-like square root for the Number Field Sieve,orm. Then the method was adapted for general numbers, and recently applied to the RSA-130 number [6], setting a new world record in factorization. The NFS has undergone several modifications since its appearance. One of these modifications concerns the last stage: the computation of the square root
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 11:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
益阳市| 两当县| 烟台市| 辽阳县| 高密市| 丰县| 和田市| 阆中市| 称多县| 夏津县| 临城县| 青川县| 惠安县| 尼玛县| 宁化县| 弋阳县| 宁都县| 通渭县| 南宫市| 秭归县| 手机| 睢宁县| 台前县| 嘉义市| 怀远县| 万盛区| 泽州县| 获嘉县| 资阳市| 娱乐| 麻阳| 临泉县| 营山县| 德昌县| 商丘市| 醴陵市| 光泽县| 武城县| 富宁县| 资中县| 湖北省|