找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithmic Learning Theory; 6th International Wo Klaus P. Jantke,Takeshi Shinohara,Thomas Zeugmann Conference proceedings 1995 Springer-Ve

[復(fù)制鏈接]
樓主: 街道
41#
發(fā)表于 2025-3-28 15:53:25 | 只看該作者
42#
發(fā)表于 2025-3-28 19:31:40 | 只看該作者
43#
發(fā)表于 2025-3-29 02:11:09 | 只看該作者
44#
發(fā)表于 2025-3-29 05:30:16 | 只看該作者
Gründung und Errichtung der Kreditinstituteormulas is learnable with membership, equivalence and subset queries. Moreover, it is shown that under some condition the class of orthogonal .-Horn formulas is learnable with membership and equivalence queries.
45#
發(fā)表于 2025-3-29 10:34:49 | 只看該作者
46#
發(fā)表于 2025-3-29 14:35:27 | 只看該作者
?Bankbetrieb“ und ?Bankbetriebslehre“above, we obtain probabilistic hierarchies highly structured without a “gap” between the probabilistic and deterministic learning classes. In the case of exact probabilistic learning, we are able to show the probabilistic hierarchy to be dense for every mentioned monotonicity condition. Considering
47#
發(fā)表于 2025-3-29 18:50:55 | 只看該作者
Learning unions of tree patterns using queries,time PAC-learnability and the polynomial time predictability of .. when membership queries are available. We also show a lower bound . of the number of queries necessary to learn .. using both types of queries. Further, we show that neither types of queries can be eliminated to achieve efficient lea
48#
發(fā)表于 2025-3-29 23:31:36 | 只看該作者
49#
發(fā)表于 2025-3-30 00:29:20 | 只看該作者
Machine induction without revolutionary paradigm shifts,nference, it is shown that there are classes learnable . the non-revolutionary constraint (respectively, with severe parsimony), up to (i}+1) mind changes, and no anomalies, which classes cannot be learned with no size constraint, an unbounded, finite number of anomalies in the final program, but wi
50#
發(fā)表于 2025-3-30 06:32:32 | 只看該作者
Probabilistic language learning under monotonicity constraints,above, we obtain probabilistic hierarchies highly structured without a “gap” between the probabilistic and deterministic learning classes. In the case of exact probabilistic learning, we are able to show the probabilistic hierarchy to be dense for every mentioned monotonicity condition. Considering
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 23:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阿瓦提县| 平舆县| 湖北省| 建昌县| 明溪县| 清水河县| 江西省| 寿宁县| 荃湾区| 南宫市| 阿荣旗| 恭城| 明星| 嫩江县| 二连浩特市| 乐业县| 胶南市| 休宁县| 宝坻区| 山丹县| 大渡口区| 乌鲁木齐县| 青海省| 灵台县| 中山市| 富阳市| 磴口县| 桦南县| 双鸭山市| 芷江| 南宁市| 沐川县| 平定县| 会东县| 怀来县| 封开县| 黄骅市| 石狮市| 武定县| 新竹市| 丽水市|