找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithmic Decision Theory; Second International Ronen I. Brafman,Fred S. Roberts,Alexis Tsoukiàs Conference proceedings 2011 Springer-Ver

[復(fù)制鏈接]
樓主: EXERT
11#
發(fā)表于 2025-3-23 13:20:42 | 只看該作者
12#
發(fā)表于 2025-3-23 16:48:29 | 只看該作者
Dependable Computing – EDCC 2022 Workshopspdate these values so that this semantics of the value of variables is maintained. An empirical evaluation of our planner, comparing it to the best current CPP solver, Probabilistic-FF, shows that it is a promising approach.
13#
發(fā)表于 2025-3-23 18:54:58 | 只看該作者
https://doi.org/10.1007/3-540-48254-7to solve it exactly. We then compare against a Stochastic Constraint Programming (SCP) approach which applies randomized local search. While the BnB guarantees optimality, it can only solve smaller instances in a reasonable time and the SCP approach outperforms it for larger instances.
14#
發(fā)表于 2025-3-23 22:24:14 | 只看該作者
Irina Alam,Lara Dolecek,Puneet Guptandent and that the Bellman principle does not hold for OWR-optimal policies, we propose a linear programming reformulation of the problem. We also provide experimental results showing the efficiency of our approach.
15#
發(fā)表于 2025-3-24 04:49:06 | 只看該作者
Adrian Evans,Said Hamdioui,Ben Kaczerets of data, is also addressed. If the input data in the optimal aggregation problem are measured on a ratio scale and if the aggregation must be unanimous and symmetric, the arithmetic mean is the only sensible aggregation method.
16#
發(fā)表于 2025-3-24 08:40:26 | 只看該作者
A Translation Based Approach to Probabilistic Conformant Planning,pdate these values so that this semantics of the value of variables is maintained. An empirical evaluation of our planner, comparing it to the best current CPP solver, Probabilistic-FF, shows that it is a promising approach.
17#
發(fā)表于 2025-3-24 13:21:26 | 只看該作者
Risk-Averse Production Planning,to solve it exactly. We then compare against a Stochastic Constraint Programming (SCP) approach which applies randomized local search. While the BnB guarantees optimality, it can only solve smaller instances in a reasonable time and the SCP approach outperforms it for larger instances.
18#
發(fā)表于 2025-3-24 15:37:46 | 只看該作者
On Minimizing Ordered Weighted Regrets in Multiobjective Markov Decision Processes,ndent and that the Bellman principle does not hold for OWR-optimal policies, we propose a linear programming reformulation of the problem. We also provide experimental results showing the efficiency of our approach.
19#
發(fā)表于 2025-3-24 21:24:31 | 只看該作者
20#
發(fā)表于 2025-3-25 01:37:06 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 12:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
九台市| 留坝县| 莫力| 古蔺县| 万盛区| 东辽县| 大洼县| 襄汾县| 特克斯县| 清涧县| 沈丘县| 安龙县| 汕尾市| 芦溪县| 桂林市| 辽阳县| 黔西| 凤庆县| 三亚市| 昂仁县| 新安县| 开鲁县| 台山市| 奉贤区| 大足县| 固阳县| 神木县| 邵东县| 赤水市| 丰台区| 蕉岭县| 永平县| 武功县| 临城县| 乐安县| 湾仔区| 兴文县| 文昌市| 韶山市| 柳州市| 乐安县|