找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithmic Aspects in Information and Management; 14th International C Zhao Zhang,Wei Li,Ding-Zhu Du Conference proceedings 2020 Springer

[復(fù)制鏈接]
樓主: Cyclone
21#
發(fā)表于 2025-3-25 05:32:38 | 只看該作者
22#
發(fā)表于 2025-3-25 07:32:25 | 只看該作者
23#
發(fā)表于 2025-3-25 13:35:58 | 只看該作者
24#
發(fā)表于 2025-3-25 18:54:40 | 只看該作者
A Bi-criteria Analysis for Fuzzy ,-means Problem,r centers can achieve . and .(.) approximation. Preliminary numerical experiments are proposed to support the theoretical results of the paper, in which we run these algorithms on real data sets with different parameter values.
25#
發(fā)表于 2025-3-25 23:28:52 | 只看該作者
26#
發(fā)表于 2025-3-26 03:44:34 | 只看該作者
Approximating Max ,-Uncut via LP-rounding Plus Greed, with Applications to Densest ,-Subgraph,ic . problem, and was proved to have surprisingly rich connection to the . . problem. In this paper, we give approximation algorithms for . using a non-uniform approach combining LP-rounding and the greedy strategy. With a limited violation of the constraint ., we present a good expected approximation ratio . for ..
27#
發(fā)表于 2025-3-26 06:45:49 | 只看該作者
28#
發(fā)表于 2025-3-26 11:06:06 | 只看該作者
29#
發(fā)表于 2025-3-26 16:18:38 | 只看該作者
https://doi.org/10.1007/978-3-322-92431-5t tours or intersects . given rays. We show that it can be reduced to the problem of computing a shortest route that intersects a set of ray-segments, inside a circle; at least one endpoint of every ray-segment is on the circle. Moreover, computing the shortest route intersecting all ray-segments in
30#
發(fā)表于 2025-3-26 20:18:01 | 只看該作者
https://doi.org/10.1007/978-3-476-02749-8a geometric region in .. They can be applied to represent a rich class of geometric objects, which include all polyhedra and the union of a finite number of polyhedron. They can be also used to approximate a large class of .-dimensional manifolds in .. Barvinok?[.] developed polynomial time algorith
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 12:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
堆龙德庆县| 武安市| 博罗县| 建德市| 色达县| 息烽县| 历史| 罗平县| 宁海县| 清水河县| 大丰市| 成安县| 宜春市| 常熟市| 津南区| 汉川市| 和顺县| 通江县| 蒙城县| 山阳县| 应城市| 山丹县| 申扎县| 青浦区| 个旧市| 东阳市| 炉霍县| 南和县| 双峰县| 唐山市| 竹溪县| 区。| 黄浦区| 金川县| 比如县| 高阳县| 南雄市| 察隅县| 平利县| 永寿县| 奈曼旗|