找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithmic Algebra; Bhubaneswar Mishra Textbook 1993 Springer-Verlag New York, Inc. 1993 Gr?bner basis.algebra.algorithms.computer.comput

[復(fù)制鏈接]
樓主: ACID
11#
發(fā)表于 2025-3-23 10:58:38 | 只看該作者
Dubbels Taschenbuch für den Maschinenbauarbitrary set of multivariate polynomials. The .-polynomial and reduction processes take the place of the . step of the Gaussian algorithm. Taking this analogy much further, one can devise a constructive procedure to compute the set of solutions of a system of arbitrary multivariate polynomial equat
12#
發(fā)表于 2025-3-23 17:39:41 | 只看該作者
F. Fr?hlich,Ch. Bouché,F. Sass,F. Wettst?dt the constructive algebraic methods to differential algebra. However, the concept languished in near oblivion until the seventies when the Chinese mathematician Wu Wen-Tsün [209–211] realized its power in the case where Ritt’s techniques are specialized to commutative algebra. In particular, he exhi
13#
發(fā)表于 2025-3-23 18:07:43 | 只看該作者
14#
發(fā)表于 2025-3-24 01:57:14 | 只看該作者
Dubbels Taschenbuch für den Maschinenbau). The underlying (real) geometry provides a rich set of mechanisms to describe such topological notions as “between,” “above/below,” “internal/external,” since it can use the inherent order relation (<) of the real (or, real closed) field. As a result, the subject has found many applications in suc
15#
發(fā)表于 2025-3-24 03:44:19 | 只看該作者
16#
發(fā)表于 2025-3-24 10:20:50 | 只看該作者
17#
發(fā)表于 2025-3-24 11:03:56 | 只看該作者
Algorithmic Algebra978-1-4612-4344-1Series ISSN 0172-603X Series E-ISSN 2512-5486
18#
發(fā)表于 2025-3-24 15:25:37 | 只看該作者
Dubbels Taschenbuch für den Maschinenbauctive methods that compute a Gr?bner basis of an ideal, we need to endow the underlying ring with certain additional constructive properties. Two such properties we consider in detail, are . and .. A computable Noetherian ring with such properties will be referred to as a ..
19#
發(fā)表于 2025-3-24 22:51:58 | 只看該作者
20#
發(fā)表于 2025-3-25 00:34:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-28 21:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新河县| 农安县| 乌鲁木齐市| 墨江| 莱芜市| 凤翔县| 游戏| 长垣县| 海口市| 兴义市| 泾川县| 湖南省| 江都市| 宁安市| 保亭| 五莲县| 长宁县| 社旗县| 通州区| 上思县| 繁昌县| 陵水| 和林格尔县| 德阳市| 方山县| 乐昌市| 新巴尔虎左旗| 于都县| 阿坝| 苏尼特右旗| 武山县| 桂平市| 冕宁县| 合肥市| 古蔺县| 苍山县| 临高县| 申扎县| 卢氏县| 丹凤县| 曲沃县|