找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebras, Quivers and Representations; The Abel Symposium 2 Aslak Bakke Buan,Idun Reiten,?yvind Solberg Book 2013 Springer-Verlag Berlin He

[復(fù)制鏈接]
樓主: Flange
31#
發(fā)表于 2025-3-26 21:28:26 | 只看該作者
Democratic Culture and Moral Characteromorphisms between indecomposable finite dimensional modules are finite (do not belong to the infinite Jacobson radical of the module category). Moreover, geometric and homological properties of these module categories are exhibited.
32#
發(fā)表于 2025-3-27 05:08:00 | 只看該作者
https://doi.org/10.1007/978-3-642-39485-0cluster algebras; homological algebra; quivers; representation theory; triangulated categories
33#
發(fā)表于 2025-3-27 08:49:52 | 只看該作者
978-3-642-43018-3Springer-Verlag Berlin Heidelberg 2013
34#
發(fā)表于 2025-3-27 13:30:59 | 只看該作者
2193-2808 n, it includes contributions on further developments in representation theory of quivers and algebras..Algebras, Quivers and Representations. is targeted at researchers and graduate students in algebra, representation theory and triangulate categories..?978-3-642-43018-3978-3-642-39485-0Series ISSN 2193-2808 Series E-ISSN 2197-8549
35#
發(fā)表于 2025-3-27 14:36:28 | 只看該作者
36#
發(fā)表于 2025-3-27 20:30:41 | 只看該作者
37#
發(fā)表于 2025-3-27 22:44:04 | 只看該作者
Combinatorics of KP Solitons from the Real Grassmannian,er highlights include: a surprising connection with total positivity and cluster algebras; results on the .; and the characterization of regular soliton solutions—that is, a soliton solution ..(.,.,.) is regular for all times . if and only if . comes from the . of the Grassmannian.
38#
發(fā)表于 2025-3-28 03:55:46 | 只看該作者
39#
發(fā)表于 2025-3-28 06:42:56 | 只看該作者
Acyclic Cluster Algebras Revisited, simple proof of the known result that the .-vectors of an acyclic cluster algebra are sign-coherent, from which Nakanishi and Zelevinsky have showed that it is possible to deduce in an elementary way several important facts about cluster algebras.
40#
發(fā)表于 2025-3-28 11:34:27 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 08:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
杂多县| 中西区| 兴业县| 安化县| 大同市| 元阳县| 介休市| 廉江市| 安丘市| 武冈市| 大丰市| 新巴尔虎右旗| 区。| 鸡泽县| 边坝县| 肇东市| 泸水县| 敦化市| 灵石县| 桦川县| 常宁市| 勐海县| 达孜县| 凤山县| 浦县| 阿瓦提县| 进贤县| 乡城县| 汉阴县| 崇左市| 诸暨市| 临海市| 津南区| 西藏| 沽源县| 上饶市| 潍坊市| 肇庆市| 响水县| 林芝县| 孟村|