找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic-Geometric Codes; M. A. Tsfasman,S. G. Vl?du? Book 1991 Kluwer Academic Publishers and Copyright Holders 1991 algebraic curve.ana

[復(fù)制鏈接]
樓主: encroach
21#
發(fā)表于 2025-3-25 05:03:24 | 只看該作者
22#
發(fā)表于 2025-3-25 10:45:45 | 只看該作者
23#
發(fā)表于 2025-3-25 12:28:23 | 只看該作者
24#
發(fā)表于 2025-3-25 19:26:14 | 只看該作者
Towards a Definition of Democracy,lgorithm for Reed-Solomon codes (given in Section 1.2.1) to the case of an arbitrary curve; we call it the basic algorithm. Unfortunately the basic algorithm corrects ./2 errors less than one would like. The reason is that the Riemann-Roch theorem does not answer the question about the exact value o
25#
發(fā)表于 2025-3-25 21:05:08 | 只看該作者
Is Democracy the Best Form of Government?,nstructed from families of algebraic curves are the better, the higher is (asymptotically) the ratio of the number of F.-points on them to their genus. In Section 3.4.1 we establish the basic algebraic-geometric asymptotic bound, it is a line intersecting the Gilbert-Varshamov bound if . is large en
26#
發(fā)表于 2025-3-26 01:11:38 | 只看該作者
27#
發(fā)表于 2025-3-26 08:08:13 | 只看該作者
978-1-4020-0335-6Kluwer Academic Publishers and Copyright Holders 1991
28#
發(fā)表于 2025-3-26 10:21:31 | 只看該作者
29#
發(fā)表于 2025-3-26 14:03:18 | 只看該作者
Democracies at War against TerrorismIn this chapter we present several examples of codes. Each example is in fact a method to construct some family of codes, which (in some way or other) have rather good parameters. Since in many cases these families are predecessors of algebraic-geometric codes, we try to choose constructions that are easy to generalize in that direction.
30#
發(fā)表于 2025-3-26 16:57:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 06:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南京市| 元阳县| 恩施市| 阜新| 和林格尔县| 芜湖县| 师宗县| 黔西县| 琼海市| 南昌县| 神池县| 长兴县| 邵武市| 清水河县| 剑川县| 白城市| 金塔县| 筠连县| 武安市| 定安县| 西安市| 白山市| 平顶山市| 城固县| 南和县| 米脂县| 英超| 新民市| 鄄城县| 清镇市| 日土县| 镇沅| 尚义县| 安溪县| 南丹县| 班玛县| 同江市| 奉贤区| 闽侯县| 社旗县| 泸西县|