找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic and Logic Programming; 4th International Co Giorgio Levi,Mario Rodríguez-Artalejo Conference proceedings 1994 Springer-Verlag Ber

[復制鏈接]
樓主: CAP
51#
發(fā)表于 2025-3-30 09:12:01 | 只看該作者
0302-9743 the papers are organized into sections on theorem proving, narrowing, logic programming, term rewriting, and higher-order programming.978-3-540-58431-5978-3-540-48791-3Series ISSN 0302-9743 Series E-ISSN 1611-3349
52#
發(fā)表于 2025-3-30 15:39:57 | 只看該作者
53#
發(fā)表于 2025-3-30 19:46:58 | 只看該作者
54#
發(fā)表于 2025-3-30 23:31:59 | 只看該作者
Sufficient completeness and parameterized proofs by induction,lete and the constructors are not free. The method has been implemented in the prover SPIKE. Based on computer experiments, the method appears to be more practical and efficient than inductive theorem proving in non-parameterized specifications. Moreover, SPIKE offers facilities to check and complete definitions.
55#
發(fā)表于 2025-3-31 03:20:04 | 只看該作者
56#
發(fā)表于 2025-3-31 09:04:12 | 只看該作者
https://doi.org/10.1007/978-1-4471-2377-4 to a given first-order specification is equivalent to the standard validity of the same formula in a suitably enriched specification. As a consequence any proof system for first-order logic can be used to prove the behavioural validity of first-order formulas.
57#
發(fā)表于 2025-3-31 11:50:19 | 只看該作者
https://doi.org/10.1007/978-3-319-75259-4 the solutions of this geometrical system corresponding to the solutions of the original algebraic problem. As a corollary, unification in planar ternary rings is finitary and constitutes a decidable class of problems for which a type conformal algorithm exists.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 04:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
肥乡县| 张掖市| 门头沟区| 繁昌县| 保山市| 德安县| 青州市| 柘荣县| 玉屏| 台江县| 临汾市| 铁岭市| 千阳县| 七台河市| 湘西| 清流县| 镇巴县| 龙井市| 亚东县| 武宁县| 九江县| 铜山县| 宁武县| 封开县| 安达市| 拜城县| 高淳县| 青阳县| 锡林郭勒盟| 同仁县| 卓资县| 连平县| 顺义区| 齐河县| 贺州市| 武胜县| 蕉岭县| 宣城市| 育儿| 宿松县| 屯门区|