找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Transformation Groups and Algebraic Varieties; Proceedings of the c Vladimir L. Popov Conference proceedings 2004 Springer-Verlag

[復制鏈接]
樓主: Bunion
21#
發(fā)表于 2025-3-25 04:26:47 | 只看該作者
22#
發(fā)表于 2025-3-25 11:34:28 | 只看該作者
Normality and Non Normality Of Certain Semigroups and Orbit Closures,ctification of the adjoint quotient of . and its projective normality [K]. These methods are then used to discuss the normality or non normality of certain other orbit closures including determinantal varieties.
23#
發(fā)表于 2025-3-25 13:10:56 | 只看該作者
,Geometric Realization Of ,-shaped Root Systems and Counterexamples To Hilbert’s Fourteenth Problem,application we show that the invariant ring of a tensor product of the actions of Nagata type is infinitely generated if the Weyl group of the corresponding root system .. is indefinite. In this sense this article is a continuation of [4].
24#
發(fā)表于 2025-3-25 17:09:41 | 只看該作者
25#
發(fā)表于 2025-3-25 22:03:34 | 只看該作者
26#
發(fā)表于 2025-3-26 01:03:22 | 只看該作者
27#
發(fā)表于 2025-3-26 05:57:24 | 只看該作者
28#
發(fā)表于 2025-3-26 11:22:03 | 只看該作者
29#
發(fā)表于 2025-3-26 16:18:13 | 只看該作者
https://doi.org/10.1057/9780230319974application we show that the invariant ring of a tensor product of the actions of Nagata type is infinitely generated if the Weyl group of the corresponding root system .. is indefinite. In this sense this article is a continuation of [4].
30#
發(fā)表于 2025-3-26 20:44:24 | 只看該作者
Losing the Signal in the Noise,jectivized nilpotent varieties of isotropy modules. For them, we classify all orbit closures . such that . where . is the projective dual of .. We give algebraic criteria of projective self-duality for the considered orbit closures.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 11:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
台北县| 宜黄县| 遵化市| 兴安县| 柳州市| 保定市| 商洛市| 沭阳县| 盖州市| 宁夏| 青河县| 正镶白旗| 彭水| 恩施市| 宜阳县| 安阳县| 本溪| 翁源县| 光山县| 黄石市| 乌兰县| 兴安盟| 隆林| 祥云县| 揭东县| 临高县| 萨迦县| 兴和县| 台前县| 虎林市| 白水县| 南阳市| 灵宝市| 元氏县| 荃湾区| 湛江市| 彭山县| 庆云县| 武山县| 梁河县| 定陶县|