找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Topology: New Trends in Localization and Periodicity; Barcelona Conference Carles Broto,Carles Casacuberta,Guido Mislin Conferenc

[復(fù)制鏈接]
樓主: 削木頭
21#
發(fā)表于 2025-3-25 04:40:37 | 只看該作者
Algebraic Topology: New Trends in Localization and Periodicity978-3-0348-9018-2Series ISSN 0743-1643 Series E-ISSN 2296-505X
22#
發(fā)表于 2025-3-25 10:38:03 | 只看該作者
23#
發(fā)表于 2025-3-25 14:13:06 | 只看該作者
24#
發(fā)表于 2025-3-25 16:02:21 | 只看該作者
https://doi.org/10.1007/978-3-030-58442-9 Wilson chararacterise this Hopf ring by a purely algebraic universal property, and also prove that the .-homology of each component of each even space is polynomial under the star product. The star-indecomposables in this Hopf ring form an algebra under the circle product.
25#
發(fā)表于 2025-3-25 22:12:16 | 只看該作者
26#
發(fā)表于 2025-3-26 00:17:03 | 只看該作者
https://doi.org/10.1007/978-3-0348-9018-2Algebraic topology; Homotopy; K-theory; cohomology; group theory; homology; homotopy theory; localization o
27#
發(fā)表于 2025-3-26 05:26:39 | 只看該作者
28#
發(fā)表于 2025-3-26 11:12:26 | 只看該作者
29#
發(fā)表于 2025-3-26 15:20:44 | 只看該作者
Estimates of Available Mine-Sites,We apply the homology theory with local coefficients to study closed even-dimensional manifolds with highly connected universal covering spaces. Then we obtain simple algebraic characterizations of aspherical manifolds and discuss some properties regarding the minimality of their Euler characteristics.
30#
發(fā)表于 2025-3-26 18:44:31 | 只看該作者
Delinquency Careers in Two Birth CohortsA nilmanifold, as defined by Malcev [Ma], is a compact manifold . which is the space of cosets of a simply connected Lie group by discrete uniform subgroup .. Thus the manifold . can be identified with the Eilenberg-MacLane space .(., 1), where . = π. (.) is a finitely generated torsion free nilpotent group.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 08:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乌什县| 河池市| 荥阳市| 法库县| 郴州市| 泉州市| 民权县| 营口市| 会泽县| 冕宁县| 铜陵市| 轮台县| 平江县| 荣昌县| 凤山市| 威海市| 久治县| 平潭县| 泾阳县| 赣榆县| 神木县| 平陆县| 阿拉善右旗| 淮北市| 蒙城县| 广西| 随州市| 都昌县| 松阳县| 山东省| 莱州市| 汉川市| 台安县| 黎城县| 桑植县| 阿尔山市| 台北市| 城市| 德令哈市| 旬邑县| 宁化县|