找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Topology - Homotopy and Homology; Robert M. Switzer Book 2002 Springer-Verlag GmbH Germany 2002 Algebraic topology.YellowSale200

[復制鏈接]
樓主: 挑染
21#
發(fā)表于 2025-3-25 06:34:44 | 只看該作者
Covid-19: New Use of Therapeutics,n properties). If one is trying to show the non-existence of a map .: . → . with certain properties, then one wants to show that no homomorphism .*:.*(.) → .(.)with corresponding properties lies in im .. Thus it is desirable to obtain good limits on the extent of im ..
22#
發(fā)表于 2025-3-25 11:22:25 | 只看該作者
Spectra,d (., .) ∈ → .’. Now in particular, if .* is a reduced cohomology theory satisfying the wedge axiom, then for every . ∈ . . is a cofunctor of the required form, and hence .(-) = [-; ., *] for some (En, *) ∈ .’. The cofunctors hn are not unrelated, however; we have natural equivalences
23#
發(fā)表于 2025-3-25 14:03:12 | 只看該作者
24#
發(fā)表于 2025-3-25 18:29:07 | 只看該作者
Cohomology Operations and Homology Cooperations,n properties). If one is trying to show the non-existence of a map .: . → . with certain properties, then one wants to show that no homomorphism .*:.*(.) → .(.)with corresponding properties lies in im .. Thus it is desirable to obtain good limits on the extent of im ..
25#
發(fā)表于 2025-3-25 21:37:46 | 只看該作者
The Steenrod Algebra and its Dual,s precisely how Cartan did determine this algebra (see [28]) using some heavy guns from homological algebra. We shall take a different approach, however; we shall construct some specific cohomology operations—the Steenrod squares .—and show that they generate the algebra .(.(?.); ?.). It will then n
26#
發(fā)表于 2025-3-26 02:49:13 | 只看該作者
27#
發(fā)表于 2025-3-26 08:23:57 | 只看該作者
Categories, Functors and Natural Transformations,etween objects will be considered; thus, for example, topological spaces and continuous functions, groups and homomorphisms, rings and ring homomorphisms. If we formalize this observation, we are led to the notion of a category.
28#
發(fā)表于 2025-3-26 10:42:07 | 只看該作者
29#
發(fā)表于 2025-3-26 14:33:59 | 只看該作者
30#
發(fā)表于 2025-3-26 17:21:38 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 17:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
荥经县| 前郭尔| 临汾市| 阳江市| 吉首市| 永川市| 阿图什市| 开鲁县| 香港 | 渝北区| 青河县| 潼关县| 福贡县| 扶绥县| 赤水市| 巢湖市| 抚顺县| 宾川县| 桂阳县| 定襄县| 临武县| 新昌县| 东兰县| 巩义市| 玉龙| 凤凰县| 阿荣旗| 临安市| 万盛区| 屯门区| 武夷山市| 安达市| 县级市| 承德市| 固始县| 康定县| 康平县| 平谷区| 莱西市| 遵义县| 花莲市|