找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Theory of Quadratic Numbers; Mak Trifkovi? Textbook 2013 Springer Science+Business Media New York 2013 ideal class group.number

[復(fù)制鏈接]
查看: 13536|回復(fù): 39
樓主
發(fā)表于 2025-3-21 19:48:22 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Algebraic Theory of Quadratic Numbers
影響因子2023Mak Trifkovi?
視頻videohttp://file.papertrans.cn/153/152717/152717.mp4
發(fā)行地址Offers an accessible introduction to number theory by focusing on quadratic numbers.Includes many exercises that provide students with hands-on computational experience with quadratic number fields.Pr
學(xué)科分類Universitext
圖書封面Titlebook: Algebraic Theory of Quadratic Numbers;  Mak Trifkovi? Textbook 2013 Springer Science+Business Media New York 2013 ideal class group.number
影響因子.By focusing on quadratic numbers, this advanced undergraduate or master’s level textbook on algebraic number theory is accessible even to students who have yet to learn Galois theory. The techniques of elementary arithmetic, ring theory and linear algebra are shown working together to prove important theorems, such as the unique factorization of ideals and the finiteness of the ideal class group.? The book concludes with two topics particular to quadratic fields: continued fractions and quadratic forms.? The treatment of quadratic forms is somewhat more advanced? than usual, with an emphasis on their connection with ideal classes and a discussion of Bhargava cubes..The numerous exercises in the text offer the reader hands-on computational experience with elements and ideals in quadratic number fields.? The reader is also asked to fill in the details of proofs and develop extra topics, like the theory of orders.? Prerequisites include elementary number theory and a basic familiarity with ring theory..
Pindex Textbook 2013
The information of publication is updating

書目名稱Algebraic Theory of Quadratic Numbers影響因子(影響力)




書目名稱Algebraic Theory of Quadratic Numbers影響因子(影響力)學(xué)科排名




書目名稱Algebraic Theory of Quadratic Numbers網(wǎng)絡(luò)公開度




書目名稱Algebraic Theory of Quadratic Numbers網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Algebraic Theory of Quadratic Numbers被引頻次




書目名稱Algebraic Theory of Quadratic Numbers被引頻次學(xué)科排名




書目名稱Algebraic Theory of Quadratic Numbers年度引用




書目名稱Algebraic Theory of Quadratic Numbers年度引用學(xué)科排名




書目名稱Algebraic Theory of Quadratic Numbers讀者反饋




書目名稱Algebraic Theory of Quadratic Numbers讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:30:16 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:19:43 | 只看該作者
地板
發(fā)表于 2025-3-22 05:52:48 | 只看該作者
Degeneracy Graphs and Simplex Cyclingd explore them with the tools of linear algebra. For this we’ll need a simple bit of terminology. Let . be a complex vector space and . any subring of .. A linear combination . with coefficients .. ∈ . is said to be ., or .. Similar terminology applies to other linear algebra constructs: we talk of
5#
發(fā)表于 2025-3-22 10:59:36 | 只看該作者
https://doi.org/10.1007/978-1-4614-7717-4ideal class group; number theory; quadratic forms; ring theory
6#
發(fā)表于 2025-3-22 13:53:16 | 只看該作者
7#
發(fā)表于 2025-3-22 17:52:35 | 只看該作者
Basic Technique of Total Knee ArthroplastyWhen can we express a prime number as a sum of two squares? Let’s start by sorting the first dozen primes into those with such an expression, and the rest: . Do you see a pattern?
8#
發(fā)表于 2025-3-23 00:19:44 | 只看該作者
Basic Technique of Total Knee ArthroplastyIn . we can add, subtract, and multiply without restrictions, but we can’t always divide. That is what makes questions of divisibility and factorization interesting. To do arithmetic in more general number systems, we abstract these basic properties of . to get the definition of a ring.
9#
發(fā)表于 2025-3-23 03:00:02 | 只看該作者
10#
發(fā)表于 2025-3-23 08:00:23 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 01:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
息烽县| 梧州市| 林州市| 长宁区| 邵阳市| 吉林省| 鹿泉市| 泾源县| 措美县| 远安县| 集安市| 自贡市| 溧阳市| 华坪县| 晋城| 永新县| 庆城县| 上栗县| 泸水县| 托克托县| 色达县| 西贡区| 庐江县| 龙胜| 唐山市| 海口市| 个旧市| 道真| 称多县| 广宗县| 辽宁省| 内乡县| 南溪县| 建水县| 田东县| 蒲江县| 霍山县| 镇巴县| 冕宁县| 靖远县| 新和县|