找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Surfaces; Oscar Zariski Book 1995Latest edition Springer-Verlag Berlin Heidelberg 1995 Dimension.Excel.algebra.algebraic curve.a

[復(fù)制鏈接]
查看: 49109|回復(fù): 39
樓主
發(fā)表于 2025-3-21 18:20:39 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Algebraic Surfaces
影響因子2023Oscar Zariski
視頻videohttp://file.papertrans.cn/153/152706/152706.mp4
學(xué)科分類Classics in Mathematics
圖書封面Titlebook: Algebraic Surfaces;  Oscar Zariski Book 1995Latest edition Springer-Verlag Berlin Heidelberg 1995 Dimension.Excel.algebra.algebraic curve.a
影響因子The aim of the present monograph is to give a systematic exposition of the theory of algebraic surfaces emphasizing the interrelations between the various aspects of the theory: algebro-geometric, topological and transcendental. To achieve this aim, and still remain inside the limits of the allotted space, it was necessary to confine the exposition to topics which are absolutely fundamental. The present work therefore makes no claim to completeness, but it does, however, cover most of the central points of the theory. A presentation of the theory of surfaces, to be effective at all, must above all give the typical methods of proof used in the theory and their underlying ideas. It is especially true of algebraic geometry that in this domain the methods employed are at least as important as the results. The author has therefore avoided, as much as possible, purely formal accounts of results. The proofs given are of necessity condensed, for reasons of space, but no attempt has been made to condense them beyond the point of intelligibility. In many instances, due to exigencies of simplicity and rigor, the proofs given in the text differ, to a greater or less extent, from the proofs giv
Pindex Book 1995Latest edition
The information of publication is updating

書目名稱Algebraic Surfaces影響因子(影響力)




書目名稱Algebraic Surfaces影響因子(影響力)學(xué)科排名




書目名稱Algebraic Surfaces網(wǎng)絡(luò)公開度




書目名稱Algebraic Surfaces網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Algebraic Surfaces被引頻次




書目名稱Algebraic Surfaces被引頻次學(xué)科排名




書目名稱Algebraic Surfaces年度引用




書目名稱Algebraic Surfaces年度引用學(xué)科排名




書目名稱Algebraic Surfaces讀者反饋




書目名稱Algebraic Surfaces讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:28:37 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:54:23 | 只看該作者
地板
發(fā)表于 2025-3-22 05:02:46 | 只看該作者
Continuous Non-linear Systems,surfaces carrying an irrational pencil Σ of curves. Obviously, such a pencil (supposing for simplicity that the curves of the pencil are irreducible) cannot be contained in a linear system of dimension ., where . is necessarily ≧2, because the curves of the pencil are of virtual degree zero (II, 1).
5#
發(fā)表于 2025-3-22 12:12:32 | 只看該作者
6#
發(fā)表于 2025-3-22 12:53:11 | 只看該作者
Magmatic and Sub-magmatic Deformation,. is any 1-cycle on ., the integral . is called . if . ? 0 on ., a . if . ∽ 0. A simple integral . without periods (i. e. whose periods all vanish) is a constant, a rational function or a logarithmo-rational function of ., according as . is of the first, second or third kind.
7#
發(fā)表于 2025-3-22 20:39:08 | 只看該作者
Simple and Double Integrals on an Algebraic Surface,. is any 1-cycle on ., the integral . is called . if . ? 0 on ., a . if . ∽ 0. A simple integral . without periods (i. e. whose periods all vanish) is a constant, a rational function or a logarithmo-rational function of ., according as . is of the first, second or third kind.
8#
發(fā)表于 2025-3-22 21:21:03 | 只看該作者
9#
發(fā)表于 2025-3-23 04:12:05 | 只看該作者
https://doi.org/10.1007/0-306-47543-Xnch point of . if . is fixed and generic. It may be necessary to include the line at infinity of the projective plane (.) in the branch curve. However, we may always choose the co?rdinates . and . in such a manner that the line at infinity does not belong to the branch curve.
10#
發(fā)表于 2025-3-23 07:40:07 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-31 15:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
洛南县| 仙居县| 息烽县| 邮箱| 德令哈市| 韶关市| 伽师县| 博湖县| 孟州市| 和龙市| 安化县| 海安县| 咸阳市| 上犹县| 博湖县| 库伦旗| 犍为县| 临江市| 饶平县| 社会| 库尔勒市| 策勒县| 崇左市| 安图县| 乐清市| 泾阳县| 阜南县| 新营市| 绥化市| 鄱阳县| 沂南县| 普宁市| 竹山县| 团风县| 增城市| 墨玉县| 泸西县| 湘西| 桓仁| 汉源县| 仁怀市|