找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Number Theory; Serge Lang Textbook 19861st edition Springer Science+Business Media New York 1986 algebraic number theory.analyti

[復(fù)制鏈接]
樓主: Entangle
21#
發(fā)表于 2025-3-25 07:21:07 | 只看該作者
22#
發(fā)表于 2025-3-25 07:32:59 | 只看該作者
23#
發(fā)表于 2025-3-25 13:33:57 | 只看該作者
24#
發(fā)表于 2025-3-25 17:40:32 | 只看該作者
https://doi.org/10.1007/978-981-16-3957-9Let . be a function on .. We shall say that . . if for each positive integer . the function.is bounded for |.| sufficiently large.
25#
發(fā)表于 2025-3-25 20:33:15 | 只看該作者
https://doi.org/10.1007/978-981-16-3957-9This chapter is essentially Tate’s thesis, which has also appeared (finally) in the Brighton conference volume.
26#
發(fā)表于 2025-3-26 02:58:34 | 只看該作者
27#
發(fā)表于 2025-3-26 05:54:13 | 只看該作者
Algebraic IntegersThis chapter describes the basic aspects of the ring of algebraic integers in a number field (always assumed to be of finite degree over the rational numbers .). This includes the general prime ideal structure.
28#
發(fā)表于 2025-3-26 08:40:53 | 只看該作者
29#
發(fā)表于 2025-3-26 16:26:22 | 只看該作者
The Different and DiscriminantThe study of the different and discriminant provides some information on ramified primes, and also gives a sort of duality which plays a role both in the algebraic study of ramification and the later chapters on analytic duality. It also gives a good method for computing the ring of algebraic integers in a number field, as in Proposition 10.
30#
發(fā)表于 2025-3-26 20:51:15 | 只看該作者
ParallelotopesThis chapter gives quantitative results concerning the distribution of elements of a number field in parallelotopes.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 14:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
措美县| 新郑市| 蓬安县| 南岸区| 井冈山市| 柳州市| 宝丰县| 凤阳县| 长寿区| 永春县| 泰安市| 东阳市| 衡东县| 五家渠市| 武邑县| 随州市| 宜章县| 三河市| 曲松县| 四平市| 盐源县| 元谋县| 平阳县| 闻喜县| 深水埗区| 壶关县| 临沭县| 新乡县| 奉贤区| 永年县| 色达县| 望江县| 山西省| 桐乡市| 潞西市| 阳春市| 丁青县| 新乡市| 荆门市| 石门县| 黄梅县|