找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Number Theory; H. Koch Book 1997 Springer-Verlag Berlin Heidelberg 1997 Algebraische Zahlentheorie.Galois Kohomologie.Klassenk?r

[復制鏈接]
樓主: NO610
11#
發(fā)表于 2025-3-23 12:47:16 | 只看該作者
12#
發(fā)表于 2025-3-23 14:22:03 | 只看該作者
13#
發(fā)表于 2025-3-23 19:51:00 | 只看該作者
14#
發(fā)表于 2025-3-24 01:06:40 | 只看該作者
Class Field Theory,There are two main problems in the theory of algebraic number fields: On the one hand the description of the arithmetical properties of a given number field and on the other hand the description of number fields with given arithmetical properties.
15#
發(fā)表于 2025-3-24 02:54:27 | 只看該作者
16#
發(fā)表于 2025-3-24 07:25:08 | 只看該作者
Abelian Fields,The finite abelian extensions of . are called (absolute) .. So far they appeared as examples for more general theorems. In this chapter we consider further problems about number fields mostly restricted to abelian fields because the theory is much more complete in this restriction as in a more general setting.
17#
發(fā)表于 2025-3-24 14:17:17 | 只看該作者
J?rg Polakiewicz,Julia Katharina Kirchmayrmbers to algebraic numbers. Gauss considered the ring . of all numbers of the form . with . and showed that . is a ring with unique factorization in prime elements (see §2.1). He introduced these numbers for the development of his theory of biquadratic residues. Another motivation for the study of t
18#
發(fā)表于 2025-3-24 17:41:11 | 只看該作者
19#
發(fā)表于 2025-3-24 20:16:05 | 只看該作者
https://doi.org/10.1007/978-3-642-58095-6Algebraische Zahlentheorie; Galois Kohomologie; Klassenk?rpertheorie; algebra; algebraic number theory; c
20#
發(fā)表于 2025-3-25 03:04:46 | 只看該作者
978-3-540-63003-6Springer-Verlag Berlin Heidelberg 1997
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 16:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
利津县| 清丰县| 云南省| 延边| 安国市| 许昌县| 桦川县| 泽普县| 昌邑市| 宜丰县| 曲周县| 凭祥市| 建昌县| 施秉县| 岳阳县| 五家渠市| 万州区| 虎林市| 壤塘县| 农安县| 滕州市| 东方市| 措美县| 屯门区| 富裕县| 衡阳县| 景泰县| 广丰县| 麻城市| 图木舒克市| 南陵县| 来凤县| 金乡县| 紫金县| 贵阳市| 绥阳县| 建始县| 萝北县| 富川| 虎林市| 五寨县|