找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

123456
返回列表
打印 上一主題 下一主題

Titlebook: Algebraic K-Theory: Connections with Geometry and Topology; J. F. Jardine,V. P. Snaith Book 1989 Springer Science+Business Media Dordrecht

[復(fù)制鏈接]
樓主: 懇求
51#
發(fā)表于 2025-3-30 11:18:24 | 只看該作者
Beanspruchung stabf?rmiger Bauteile over a field k, then Pic(A), SK.(A) and SK.(A) are naturally modules over the ring W(k) of Witt vectors over k. If A is any commutative ring, NPic(A), NSK.(A) and NSK.(A) are naturally modules over W(A). The K-theory transfer map, defined when B is an A-algebra which is a finite projective A-module, sends SK.(B) to SK.(A) and SK.(B) to SK.(A).
52#
發(fā)表于 2025-3-30 14:17:49 | 只看該作者
Beanspruchung stabf?rmiger Bauteileety to intermediate Jacobians. These formulas generalize some previously obtained via iterated integrals on Riemann surfaces, and are obtained much more easily. Details are given concerning the representation of differential characters by differential forms with singularities.
53#
發(fā)表于 2025-3-30 17:20:35 | 只看該作者
54#
發(fā)表于 2025-3-31 00:39:45 | 只看該作者
J. Lackmann,H. Mertens,R. Liebich multiple pullback of hereditary rings over semi-simple rings. Applications of this sequence include computations of NK.(?G) for * = 1, 2 and of an upper bound for K.(D.), D. the dihedral group of order 30.
55#
發(fā)表于 2025-3-31 03:45:45 | 只看該作者
J. Lackmann,H. Mertens,R. Liebichgebra. By the Loday-Quillen theorem the primitive part of this homology is cyclic homology, which, therefore, inherits lambda operations. The aim of this paper is to give an explicit formula for these lambda operations on cyclic homology. It turns out that the classical Euler partition of the symmetric group is involved.
56#
發(fā)表于 2025-3-31 07:19:42 | 只看該作者
Beanspruchung stabf?rmiger Bauteileegories on simplicial spaces. The group completion theorem, which relates the homology of a topological monoid to the homology of the loopspace of its classifying space, will be derived as a consequence.
123456
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 10:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
澄城县| 共和县| 兴国县| 滦南县| 吴忠市| 耒阳市| 九龙城区| 怀远县| 桐城市| 孟州市| 茌平县| 虞城县| 罗田县| 丰城市| 贵溪市| 浮山县| 邢台市| 游戏| 当阳市| 永修县| 图们市| 涿鹿县| 巴林右旗| 长垣县| 西丰县| 开平市| 疏附县| 吉隆县| 北安市| 西和县| 汕尾市| 陈巴尔虎旗| 东丰县| 万载县| 海伦市| 金乡县| 南通市| 边坝县| 兰溪市| 定日县| 郯城县|