找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic K-Theory: Connections with Geometry and Topology; J. F. Jardine,V. P. Snaith Book 1989 Springer Science+Business Media Dordrecht

[復(fù)制鏈接]
樓主: 懇求
21#
發(fā)表于 2025-3-25 04:10:22 | 只看該作者
Kahler Diferentials and HC1 of Certain Graded K-Algebras,itly in some cases, such as the co-ordinate axes, co-ordinate planes, or certain cusps. Partial results are obtained for general lines or planes through the origin..The appendix by C. Weibel discusses the relationship between my results and Algebraic K-theory.
22#
發(fā)表于 2025-3-25 09:11:21 | 只看該作者
23#
發(fā)表于 2025-3-25 13:35:32 | 只看該作者
Beanspruchung stabf?rmiger Bauteilee reduce it to a duality theorem for etale cohomology groups of the ring of integers of a number field or a curve over a finite field, which is essentially equivalent to the original theorem of Poitou and Tate.
24#
發(fā)表于 2025-3-25 18:02:30 | 只看該作者
25#
發(fā)表于 2025-3-25 23:43:48 | 只看該作者
26#
發(fā)表于 2025-3-26 02:39:30 | 只看該作者
27#
發(fā)表于 2025-3-26 06:49:36 | 只看該作者
1389-2185 ake Louise, Alberta, Canada from December 7 to December 11 of 1987. This meeting was jointly supported by NATO and the Natural Sciences and Engineering Research Council of Canada, and was sponsored in part by the Canadian Mathematical Society. This book is the volume of proceedings for that meeting.
28#
發(fā)表于 2025-3-26 08:40:06 | 只看該作者
29#
發(fā)表于 2025-3-26 14:20:42 | 只看該作者
Erg?nzungen zur H?heren Mathematikthe characteristic of the residue field). Using this result, we prove the finiteness of the prime to p torsion in the second Chow group of certain varieties over p-adic fields. We also prove similar results for other K-cohomology groups.
30#
發(fā)表于 2025-3-26 17:59:18 | 只看該作者
https://doi.org/10.1007/978-3-642-38891-0 representation rings, the behaviour of the canonical form wwith respect to Adams operations and a description of a refinement of Explicit Brauer Induction to produce canonical ‘monomial resolutions’ of representations of finite groups.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 04:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
华蓥市| 阜南县| 南丰县| 常山县| 桂阳县| 临潭县| 班玛县| 南通市| 油尖旺区| 赣榆县| 仁寿县| 南宁市| 武宁县| 手游| 台中市| 锦屏县| 桐梓县| 蓬莱市| 罗田县| 纳雍县| 根河市| 三亚市| 禄劝| 衡山县| 临夏市| 崇仁县| 红安县| 沁阳市| 金昌市| 黄浦区| 长宁县| 同心县| 宜兴市| 桐城市| 华坪县| 新闻| 古田县| 尼木县| 交城县| 新宁县| 黄浦区|