找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic K-Theory; Hvedri Inassaridze Book 1995 Springer Science+Business Media Dordrecht 1995 Algebraic K-theory.Grad.Grothendieck topol

[復(fù)制鏈接]
查看: 19581|回復(fù): 41
樓主
發(fā)表于 2025-3-21 16:18:48 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Algebraic K-Theory
影響因子2023Hvedri Inassaridze
視頻videohttp://file.papertrans.cn/153/152648/152648.mp4
學(xué)科分類Mathematics and Its Applications
圖書封面Titlebook: Algebraic K-Theory;  Hvedri Inassaridze Book 1995 Springer Science+Business Media Dordrecht 1995 Algebraic K-theory.Grad.Grothendieck topol
影響因子Algebraic .K.-theory is a modern branch of algebra whichhas many important applications in fundamental areas of mathematicsconnected with algebra, topology, algebraic geometry, functionalanalysis and algebraic number theory. Methods of algebraic.K.-theory are actively used in algebra and related fields,achieving interesting results. .This book presents the elements of algebraic .K.-theory, basedessentially on the fundamental works of Milnor, Swan, Bass, Quillen,Karoubi, Gersten, Loday and Waldhausen. It includes all principalalgebraic .K.-theories, connections with topological.K.-theory and cyclic homology, applications to the theory ofmonoid and polynomial algebras and in the theory of normed algebras..This volume will be of interest to graduate students and researchmathematicians who want to learn more about .K.-theory. .
Pindex Book 1995
The information of publication is updating

書目名稱Algebraic K-Theory影響因子(影響力)




書目名稱Algebraic K-Theory影響因子(影響力)學(xué)科排名




書目名稱Algebraic K-Theory網(wǎng)絡(luò)公開度




書目名稱Algebraic K-Theory網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Algebraic K-Theory被引頻次




書目名稱Algebraic K-Theory被引頻次學(xué)科排名




書目名稱Algebraic K-Theory年度引用




書目名稱Algebraic K-Theory年度引用學(xué)科排名




書目名稱Algebraic K-Theory讀者反饋




書目名稱Algebraic K-Theory讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:36:45 | 只看該作者
978-90-481-4479-2Springer Science+Business Media Dordrecht 1995
板凳
發(fā)表于 2025-3-22 03:27:53 | 只看該作者
地板
發(fā)表于 2025-3-22 06:58:46 | 只看該作者
Naoto Jinji,Xingyuan Zhang,Shoji Harunag of continuous functions on . with values in . = ? or C. If ξ is a real or complex vector bundle over ., the group Γ(ξ) of global sections can be viewed as a .-module. Swan’s result says that the functor Γ establishes an equivalence between the category of vector bundles over . and the category of
5#
發(fā)表于 2025-3-22 12:00:08 | 只看該作者
Intelligent Systems Reference Librarylgebraic .-theory, the linear group being replaced by the Lie algebra of matrices. The cyclic homology is also closely related to Hochschild homology and de Rham cohomology. Waldhausen’s algebraic A-theory of a simply connected space . can be computed rationally from the cyclic homology of the minim
6#
發(fā)表于 2025-3-22 13:05:53 | 只看該作者
Deep Inelastic , Cross Sections,I dedicate this book to my father Niko Inassaridze, Georgian writer.
7#
發(fā)表于 2025-3-22 20:09:59 | 只看該作者
8#
發(fā)表于 2025-3-22 22:03:55 | 只看該作者
Springer Tracts in Modern PhysicsBefore defining the .-theory of exact categories we will need some results on the classifying space of a small category ..
9#
發(fā)表于 2025-3-23 03:50:19 | 只看該作者
Springer Tracts in Modern PhysicsLet . be a cartesian square of rings with unit and with at least one of the homomorphisms . or . surjective.
10#
發(fā)表于 2025-3-23 06:12:32 | 只看該作者
Naoto Jinji,Xingyuan Zhang,Shoji HarunaThe well-known Serre’s problem on the freeness of finitely generated projective modules over the polynomial ring .[.,... , .] with . a field was confirmed independently by Quillen and Suslin.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 05:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
莆田市| 平邑县| 桓台县| 金湖县| 池州市| 绥中县| 敦煌市| 西畴县| 雷州市| 海伦市| 永新县| 偃师市| 沁水县| 屯留县| 余干县| 沙洋县| 容城县| 和田市| 汝城县| 民权县| 呼玛县| 靖安县| 哈巴河县| 广平县| 万州区| 棋牌| 顺义区| 巴彦县| 建宁县| 谷城县| 洛宁县| 南昌市| 金堂县| 奉贤区| 米林县| 安化县| 红安县| 建平县| 辽宁省| 霍山县| 侯马市|