找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Groups and Lie Groups with Few Factors; Alfonso Bartolo,Giovanni Falcone,Karl Strambach Book 2008 Springer-Verlag Berlin Heidelb

[復制鏈接]
樓主: morphology
11#
發(fā)表于 2025-3-23 10:51:02 | 只看該作者
Environmental Science and Engineeringe a complete classification of three-dimensional connected unipotent algebraic groups defined over a field k of characteristic .2. Some of our results even hold in the case .= 2. A main tool is the theory of extensions, which is particularly efficient for unipotent groups defined over a perfect fiel
12#
發(fā)表于 2025-3-23 16:50:40 | 只看該作者
Decommissioning Offshore Structures of .(see [87]). Observe that for algebraic subgroups .and .of .with .= ., the group .is an algebraic subgroup, too (see [45], 7.4 Corollary, p. 54)..For affine connected algebraic groups we can sharpen Theorem 1 in [87].
13#
發(fā)表于 2025-3-23 20:56:08 | 只看該作者
Multi-Purpose Casks for Power Station FuelIn this section we study groups of maximal and minimal nilpotency class.
14#
發(fā)表于 2025-3-24 02:05:08 | 只看該作者
15#
發(fā)表于 2025-3-24 04:54:32 | 只看該作者
16#
發(fā)表于 2025-3-24 09:14:36 | 只看該作者
17#
發(fā)表于 2025-3-24 11:52:38 | 只看該作者
18#
發(fā)表于 2025-3-24 16:53:38 | 只看該作者
Decommissioning Offshore Structuresgroups .of .we have either .or .. If .is affine, then .is a chain if and only if it has a unique connected algebraic subgroup of dimension ., for any .= 1., because .is, together with a Borel subgroup of ., nilpotent.
19#
發(fā)表于 2025-3-24 19:26:51 | 只看該作者
Decommissioning Offshore Structures of .(see [87]). Observe that for algebraic subgroups .and .of .with .= ., the group .is an algebraic subgroup, too (see [45], 7.4 Corollary, p. 54)..For affine connected algebraic groups we can sharpen Theorem 1 in [87].
20#
發(fā)表于 2025-3-25 00:44:42 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 08:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
泸西县| 清丰县| 天台县| 若羌县| 河东区| 湛江市| 洛扎县| 错那县| 昌邑市| 新巴尔虎左旗| 当涂县| 安新县| 新田县| 泰安市| 湘阴县| 怀集县| 济阳县| 望谟县| 肇庆市| 金堂县| 商河县| 江达县| 中超| 白城市| 丰顺县| 泸定县| 崇文区| 克东县| 许昌市| 方城县| 铜梁县| 米林县| 类乌齐县| 米脂县| 沙湾县| 和龙市| 潜山县| 临湘市| 宜章县| 夏津县| 铜鼓县|