找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Geometry III; Complex Algebraic Va Viktor S. Kulikov,P. F. Kurchanov,V. V. Shokurov,A Book 1998 Springer-Verlag Berlin Heidelberg

[復(fù)制鏈接]
查看: 54270|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:00:54 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Algebraic Geometry III
期刊簡(jiǎn)稱Complex Algebraic Va
影響因子2023Viktor S. Kulikov,P. F. Kurchanov,V. V. Shokurov,A
視頻videohttp://file.papertrans.cn/153/152606/152606.mp4
學(xué)科分類Encyclopaedia of Mathematical Sciences
圖書封面Titlebook: Algebraic Geometry III; Complex Algebraic Va Viktor S. Kulikov,P. F. Kurchanov,V. V. Shokurov,A Book 1998 Springer-Verlag Berlin Heidelberg
影響因子Starting with the end of the seventeenth century, one of the most interesting directions in mathematics (attracting the attention as J. Bernoulli, Euler, Jacobi, Legendre, Abel, among others) has been the study of integrals of the form r dz l Aw(T) = -, TO W where w is an algebraic function of z. Such integrals are now called abelian. Let us examine the simplest instance of an abelian integral, one where w is defined by the polynomial equation (1) where the polynomial on the right hand side has no multiple roots. In this case the function Aw is called an elliptic integral. The value of Aw is determined up to mv + nv , where v and v are complex numbers, and m and n are 1 2 1 2 integers. The set of linear combinations mv+ nv forms a lattice H C C, and 1 2 so to each elliptic integral Aw we can associate the torus C/ H. 2 On the other hand, equation (1) defines a curve in the affine plane C = 2 2 {(z,w)}. Let us complete C2 to the projective plane lP‘ = lP‘ (C) by the addition of the "line at infinity", and let us also complete the curve defined 2 by equation (1). The result will be a nonsingular closed curve E C lP‘ (which can also be viewed as a Riemann surface). Such a curve is cal
Pindex Book 1998
The information of publication is updating

書目名稱Algebraic Geometry III影響因子(影響力)




書目名稱Algebraic Geometry III影響因子(影響力)學(xué)科排名




書目名稱Algebraic Geometry III網(wǎng)絡(luò)公開(kāi)度




書目名稱Algebraic Geometry III網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱Algebraic Geometry III被引頻次




書目名稱Algebraic Geometry III被引頻次學(xué)科排名




書目名稱Algebraic Geometry III年度引用




書目名稱Algebraic Geometry III年度引用學(xué)科排名




書目名稱Algebraic Geometry III讀者反饋




書目名稱Algebraic Geometry III讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:29:46 | 只看該作者
0938-0396 oulli, Euler, Jacobi, Legendre, Abel, among others) has been the study of integrals of the form r dz l Aw(T) = -, TO W where w is an algebraic function of z. Such integrals are now called abelian. Let us examine the simplest instance of an abelian integral, one where w is defined by the polynomial e
板凳
發(fā)表于 2025-3-22 03:54:08 | 只看該作者
Book 1998 = 2 2 {(z,w)}. Let us complete C2 to the projective plane lP‘ = lP‘ (C) by the addition of the "line at infinity", and let us also complete the curve defined 2 by equation (1). The result will be a nonsingular closed curve E C lP‘ (which can also be viewed as a Riemann surface). Such a curve is cal
地板
發(fā)表于 2025-3-22 06:28:59 | 只看該作者
5#
發(fā)表于 2025-3-22 09:31:28 | 只看該作者
6#
發(fā)表于 2025-3-22 13:24:35 | 只看該作者
Encyclopaedia of Mathematical Scienceshttp://image.papertrans.cn/a/image/152606.jpg
7#
發(fā)表于 2025-3-22 18:59:31 | 只看該作者
8#
發(fā)表于 2025-3-22 21:54:21 | 只看該作者
9#
發(fā)表于 2025-3-23 02:14:23 | 只看該作者
10#
發(fā)表于 2025-3-23 08:58:44 | 只看該作者
Algebraic Geometry III978-3-662-03662-4Series ISSN 0938-0396
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 10:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
广灵县| 峡江县| 东海县| 海伦市| 拉萨市| 津南区| 和平县| 彭山县| 长治县| 乐安县| 吉林市| 司法| 游戏| 区。| 南昌市| 玉溪市| 城市| 太原市| 孝义市| 勃利县| 修武县| 察哈| 武义县| 乐平市| 宁远县| 清新县| 南陵县| 牙克石市| 青海省| 涞水县| 共和县| 驻马店市| 长葛市| 会宁县| 崇左市| 托克逊县| 尚义县| 江山市| 赫章县| 乐业县| 无棣县|