找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Geometry; Part I: Schemes. Wit Ulrich G?rtz,Torsten Wedhorn Textbook 20101st edition Vieweg+Teubner Verlag | Springer Fachmedien

[復(fù)制鏈接]
樓主: broach
21#
發(fā)表于 2025-3-25 05:38:18 | 只看該作者
Collective Decisions under UncertaintyIn this chapter we study one of the central technical tools of algebraic geometry: If . is a scheme and . and . are .-schemes we define the product . ×. . of . and . over . which is also called fiber product. We do this by defining . ×. . as an .-scheme which satisfies a certain universal property (and by proving that such a scheme always exists).
22#
發(fā)表于 2025-3-25 08:30:55 | 只看該作者
Computer-Based Information SystemsRecall that a topological space . is .ausdorff if and only if the following equivalent conditions are satisfied.
23#
發(fā)表于 2025-3-25 12:27:16 | 只看該作者
https://doi.org/10.1007/978-981-13-2871-8In this chapter, we will study properties of morphisms of schemes which distinguish important subclasses of morphisms. The emphasis in this chapter is on properties that are . local on the source. We start with a relative version of being affine and then study finite and quasi-finite morphisms.
24#
發(fā)表于 2025-3-25 17:28:56 | 只看該作者
Sonia Camacho,Andrea Herrera,Andrés BarriosIn this chapter we will apply the results obtained so far to noetherian schemes of dimension one. Arbitrary one-dimensional noetherian schemes will be .. Examples for absolute curves are rings of integers in number fields (i.e., finite extensions of ?) or schemes of finite type over a field . of pure dimension one. The latter we will ..
25#
發(fā)表于 2025-3-25 22:25:22 | 只看該作者
Gloria Urrea,Alfonso J. Pedraza-MartinezIn this chapter we consider several examples. Each example is given in such a way that it progresses along the theory introduced in the book and that it is possible to study the examples in parallel to the main text. We indicate in the section titles up to which chapter definitions and results are used in that particular section.
26#
發(fā)表于 2025-3-26 02:59:18 | 只看該作者
27#
發(fā)表于 2025-3-26 08:03:38 | 只看該作者
28#
發(fā)表于 2025-3-26 09:47:31 | 只看該作者
29#
發(fā)表于 2025-3-26 13:33:56 | 只看該作者
Affine and proper morphisms,In this chapter, we will study properties of morphisms of schemes which distinguish important subclasses of morphisms. The emphasis in this chapter is on properties that are . local on the source. We start with a relative version of being affine and then study finite and quasi-finite morphisms.
30#
發(fā)表于 2025-3-26 18:27:54 | 只看該作者
One-dimensional schemes,In this chapter we will apply the results obtained so far to noetherian schemes of dimension one. Arbitrary one-dimensional noetherian schemes will be .. Examples for absolute curves are rings of integers in number fields (i.e., finite extensions of ?) or schemes of finite type over a field . of pure dimension one. The latter we will ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 06:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
隆安县| 开平市| 舒城县| 钟祥市| 旌德县| 饶河县| 灌南县| 周宁县| 富蕴县| 哈巴河县| 布尔津县| 临泽县| 喜德县| 英超| 东城区| 景东| 绥江县| 株洲县| 泰顺县| 寿阳县| 新沂市| 前郭尔| 淅川县| 高尔夫| 龙山县| 星座| 三河市| 宾阳县| 林周县| 高碑店市| 广德县| 平江县| 九台市| 攀枝花市| 运城市| 清流县| 中江县| 平罗县| 宁城县| 惠安县| 满洲里市|