找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Geometry; Proceedings of the I José Manuel Aroca,Ragnar Buchweitz,Michel Merle Conference proceedings 1982 Springer-Verlag Berlin

[復(fù)制鏈接]
樓主: 五個(gè)
21#
發(fā)表于 2025-3-25 05:57:51 | 只看該作者
Individual Psychology of Decision-Making..So the following picture already shows the general phenomenon : here X is the surface in ?. defined by y.?x.?t.x.=0, Y is the t-axis, and p is the projection onto the (x,t)-plane : the curve defined by x+t.=0, y=0 is a general polar curve for X, it is not equimultiple along Y so (X.,Y) does not sa
22#
發(fā)表于 2025-3-25 07:38:09 | 只看該作者
Varietes polaires II Multiplicites polaires, sections planes, et conditions de whitney,..So the following picture already shows the general phenomenon : here X is the surface in ?. defined by y.?x.?t.x.=0, Y is the t-axis, and p is the projection onto the (x,t)-plane : the curve defined by x+t.=0, y=0 is a general polar curve for X, it is not equimultiple along Y so (X.,Y) does not sa
23#
發(fā)表于 2025-3-25 13:47:49 | 只看該作者
On deformation of curves and a formula of deligne,topologically trivial iff the Milnor numbers of the singularities are constant during the deformation. The Milnor number also occurs naturally in the degree of the singular Todd class of Baum-Fulton-MacPherson and in a formula of Deligne concerning the dimension of the base space of the semiuniversa
24#
發(fā)表于 2025-3-25 17:57:45 | 只看該作者
Varietes polaires II Multiplicites polaires, sections planes, et conditions de whitney,cal polar variety of codimension k of X, as defined by Lê D.T. and myself, and m. denotes the multiplicity at x..One can visualize P.(X) as follows : Pick an embedding X??. of a representative of (X, x) and take a general linear projection p : ?.→?.. The closure in X of the critical locus of the res
25#
發(fā)表于 2025-3-25 23:56:29 | 只看該作者
第48234主題貼--第2樓 (沙發(fā))
26#
發(fā)表于 2025-3-26 03:18:52 | 只看該作者
第48233主題貼--第2樓 (沙發(fā))
27#
發(fā)表于 2025-3-26 08:19:35 | 只看該作者
第6749主題貼--第2樓 (沙發(fā))
28#
發(fā)表于 2025-3-26 10:00:19 | 只看該作者
第48232主題貼--第2樓 (沙發(fā))
29#
發(fā)表于 2025-3-26 15:32:28 | 只看該作者
第6748主題貼--第2樓 (沙發(fā))
30#
發(fā)表于 2025-3-26 18:28:24 | 只看該作者
第48231主題貼--第2樓 (沙發(fā))
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 02:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
中宁县| 荥经县| 邵东县| 临城县| 武城县| 宁津县| 广西| 朝阳区| 历史| 邵东县| 乌拉特中旗| 高尔夫| 南丹县| 镇坪县| 澄江县| 盐边县| 虎林市| 克山县| 丹寨县| 宝山区| 额敏县| 驻马店市| 龙江县| 绩溪县| 斗六市| 兴山县| 年辖:市辖区| 凯里市| 临城县| 乌拉特后旗| 湖州市| 阿坝县| 崇礼县| 崇阳县| 尤溪县| 宜兰县| 漳平市| 常州市| 枣阳市| 锡林浩特市| 六盘水市|