找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Curves; Towards Moduli Space Maxim E. Kazaryan,Sergei K. Lando,Victor V.‘Prasol Textbook 2018 Springer Nature Switzerland AG 2018

[復(fù)制鏈接]
樓主: deduce
11#
發(fā)表于 2025-3-23 13:15:05 | 只看該作者
Curves in Projective Spaces,nsional space there is much more freedom. However, to define curves in . and higher dimensional projective spaces is more difficult than in the plane. In this chapter, we discuss methods of defining such curves.
12#
發(fā)表于 2025-3-23 16:01:34 | 只看該作者
Differential 1-Forms on Curves,ean primarily spaces of meromorphic functions, vector fields, and differential forms. These spaces are endowed with natural algebraic structures, which allows one to express properties of curves in algebraic terms.
13#
發(fā)表于 2025-3-23 21:00:29 | 只看該作者
14#
發(fā)表于 2025-3-24 00:16:54 | 只看該作者
15#
發(fā)表于 2025-3-24 02:59:28 | 只看該作者
Exam Problems,hematics of the Higher School of Economics in 2010–2014. Most of these problems were given as exercises in the main text, and we have collected them here for the reader’s convenience. Along with problems, we also give a list of exam questions.
16#
發(fā)表于 2025-3-24 06:41:22 | 只看該作者
https://doi.org/10.1007/978-3-030-98132-7Algebraic curves are curves given by polynomial equations in projective spaces. On the other hand, algebraic curves are one-dimensional complex manifolds, and to define them, there is no need to embed them anywhere. We will consider various ways to define curves and discuss how one can decide whether they result in the same curve.
17#
發(fā)表于 2025-3-24 10:55:56 | 只看該作者
https://doi.org/10.1007/978-3-642-25544-1The Riemann–Roch theorem establishes a relationship between two numbers: the dimension .(.) of the vector space .(.) of meromorphic functions with divisor ≥?. and the dimension .(.) of the space ..(.) of meromorphic 1-forms with divisor ≥?..
18#
發(fā)表于 2025-3-24 16:15:56 | 只看該作者
Decision Making in Complex Systems,In the first section of this chapter, we give a proof of the Riemann–Roch formula .(.)???.(.???.)?=?.???.?+?1. In the second section, we present a geometric interpretation of the quantities occurring in the Riemann–Roch formula in terms of canonical curves.
19#
發(fā)表于 2025-3-24 20:30:42 | 只看該作者
20#
發(fā)表于 2025-3-25 00:59:37 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 11:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
临汾市| 苗栗县| 舟曲县| 磐安县| 柞水县| 南城县| 仪征市| 宝坻区| 岳普湖县| 油尖旺区| 汤阴县| 康定县| 陆丰市| 北宁市| 中江县| 洪洞县| 沅陵县| 文化| 抚州市| 江永县| 佛山市| 裕民县| 东兴市| 宜宾市| 射阳县| 土默特右旗| 巴楚县| 文水县| 固镇县| 剑阁县| 江城| 长兴县| 邵阳县| 七台河市| 兴义市| 荔浦县| 云龙县| 阿克陶县| 右玉县| 穆棱市| 虹口区|