找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Aspects of Integrable Systems; In Memory of Irene D A. S. Fokas,I. M. Gelfand Book 1997 Birkh?user Boston 1997 algebra.differenti

[復(fù)制鏈接]
查看: 23301|回復(fù): 58
樓主
發(fā)表于 2025-3-21 18:07:58 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Algebraic Aspects of Integrable Systems
期刊簡稱In Memory of Irene D
影響因子2023A. S. Fokas,I. M. Gelfand
視頻videohttp://file.papertrans.cn/153/152551/152551.mp4
學(xué)科分類Progress in Nonlinear Differential Equations and Their Applications
圖書封面Titlebook: Algebraic Aspects of Integrable Systems; In Memory of Irene D A. S. Fokas,I. M. Gelfand Book 1997 Birkh?user Boston 1997 algebra.differenti
Pindex Book 1997
The information of publication is updating

書目名稱Algebraic Aspects of Integrable Systems影響因子(影響力)




書目名稱Algebraic Aspects of Integrable Systems影響因子(影響力)學(xué)科排名




書目名稱Algebraic Aspects of Integrable Systems網(wǎng)絡(luò)公開度




書目名稱Algebraic Aspects of Integrable Systems網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Algebraic Aspects of Integrable Systems被引頻次




書目名稱Algebraic Aspects of Integrable Systems被引頻次學(xué)科排名




書目名稱Algebraic Aspects of Integrable Systems年度引用




書目名稱Algebraic Aspects of Integrable Systems年度引用學(xué)科排名




書目名稱Algebraic Aspects of Integrable Systems讀者反饋




書目名稱Algebraic Aspects of Integrable Systems讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:51:05 | 只看該作者
Automorphic Pseudodifferential Operators,phic behaviour. In the simplest case, this correspondence is as follows. Let Γ be a discrete subgroup of ..(?) acting on the complex upper half-plane . in the usual way, and . a modular form of even weight . on Γ. Then there is a unique lifting from . to a Γ-invariant ΨDO with leading term .?., wher
板凳
發(fā)表于 2025-3-22 03:59:36 | 只看該作者
地板
發(fā)表于 2025-3-22 07:14:15 | 只看該作者
5#
發(fā)表于 2025-3-22 10:35:50 | 只看該作者
6#
發(fā)表于 2025-3-22 14:28:59 | 只看該作者
Compatibility in Abstract Algebraic Structures,the structure given by compatibility is bound to the situation of hamiltonian dynamic systems and how much of that can be transferred to a complete abstract situation where the algebraic structures under consideration are given by bilinear maps on some module over a commutative ring. Under suitable
7#
發(fā)表于 2025-3-22 20:24:31 | 只看該作者
A Theorem of Bochner, Revisited,s names of additional, master or conformal symmetries. They were discovered by Fokas, Fuchssteiner and Oevel [9], [10], [25], Chen, Lee and Lin [4] and Orlov and Schulman [26]. They are intimately related to the bihamiltonian nature of the equations of the theory of solitons which was pioneered in t
8#
發(fā)表于 2025-3-22 23:21:55 | 只看該作者
Obstacles to Asymptotic Integrability,and show that the analysis of the higher order terms provides a sufficient condition for asymptotic integrability of the original equation. The nonintegrable effects, which we call “obstacles” to the integrability, are shown to result in an inelasticity in soliton interaction. The main technique use
9#
發(fā)表于 2025-3-23 01:33:38 | 只看該作者
Infinitely-Precise Space-Time Discretizations of the Equation ut + uux = 0, of the Volterra system is preserved exactly. Since in the space-continuous limit the Volterra system turns into the basic nonlinear infinite-dimensional dynamical system .. + .. = 0, the Volterra conservation laws are discretizations of the conservation laws (../.). + [(../(.+1)] . = 0, . ∈ ..
10#
發(fā)表于 2025-3-23 07:15:33 | 只看該作者
Trace Formulas and the Canonical 1-Form,ted by pairs QP of smooth functions of period 1, equipped with the classical 1-form QdP = ∫. [.].. The introduction of canon- ically paired coordinates .... : . ∈ ?, as in Sections 2 and 6 below, suggests the identity . = Σ....., up to an additive exact form, and this may be verified, as in Sections
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 11:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
德昌县| 新宾| 鄱阳县| 米易县| 垫江县| 泽库县| 广汉市| 万源市| 松阳县| 东阳市| 汉川市| 布拖县| 涡阳县| 和田县| 保康县| 祁门县| 永昌县| 富锦市| 奈曼旗| 拜泉县| 隆化县| 夹江县| 丰城市| 棋牌| 通海县| 五家渠市| 台北市| 翁源县| 成武县| 兴义市| 娄烦县| 荆门市| 永州市| 远安县| 子长县| 余庆县| 永吉县| 洛南县| 子长县| 酉阳| 运城市|