找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebra without Borders – Classical and Constructive Nonassociative Algebraic Structures; Foundations and Appl Mahouton Norbert Hounkonnou,

[復(fù)制鏈接]
樓主: 寓言
11#
發(fā)表于 2025-3-23 09:54:23 | 只看該作者
Textbook Jul 1992Latest editionhed pairs are defined and completely characterized. Main structural properties and relations are also deduced and analyzed. In addition, the partially and totally hom-coassociative ternary coalgebras and their infinitesimal bialgebraic structures are constructed and discussed.
12#
發(fā)表于 2025-3-23 17:16:22 | 只看該作者
13#
發(fā)表于 2025-3-23 19:25:32 | 只看該作者
14#
發(fā)表于 2025-3-24 01:00:18 | 只看該作者
15#
發(fā)表于 2025-3-24 03:51:52 | 只看該作者
https://doi.org/10.1007/978-1-349-22129-5udy this exotic mechanics on the tangent bundle of the configuration space or velocity phase space. We consider Feynman-Dyson’s proof of Maxwell’s equations using Jacobi identity on the velocity phase space. In this review we generalize the Feynman-Dyson’s scheme by incorporating the non-commutativi
16#
發(fā)表于 2025-3-24 07:17:04 | 只看該作者
https://doi.org/10.1007/978-3-031-39334-1constructive mathematics; nonassociative algebraic structures; AG-groupoid; Hom-algebraic structures; co
17#
發(fā)表于 2025-3-24 12:07:22 | 只看該作者
978-3-031-39336-5The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
18#
發(fā)表于 2025-3-24 14:59:12 | 只看該作者
(Hom-)(co)associative Ternary (Co)algebras and Infinitesimal Ternary (Hom-)bialgebras,hed pairs are defined and completely characterized. Main structural properties and relations are also deduced and analyzed. In addition, the partially and totally hom-coassociative ternary coalgebras and their infinitesimal bialgebraic structures are constructed and discussed.
19#
發(fā)表于 2025-3-24 22:46:31 | 只看該作者
Mahouton Norbert Hounkonnou,Melanija Mitrovi?,MadaExplores connections between new algebraic ideas and other areas of mathematics, natural sciences, and engineering.Focuses on the interplay between theory and applications.Investigates applications in
20#
發(fā)表于 2025-3-25 02:30:09 | 只看該作者
STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Healthhttp://image.papertrans.cn/a/image/152527.jpg
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 11:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
靖边县| 内乡县| 渝中区| 乐平市| 信宜市| 灵宝市| 桦甸市| 南宫市| 治县。| 白银市| 咸宁市| 磐安县| 滨州市| 安西县| 罗山县| 大同县| 新乡县| 岳阳市| 民勤县| 铜川市| 赤峰市| 贺州市| 安庆市| 砀山县| 英超| 社旗县| 延川县| 土默特左旗| 齐河县| 五指山市| 喀喇| 青铜峡市| 崇仁县| 新泰市| 淮滨县| 新余市| 烟台市| 阳新县| 玉环县| 新巴尔虎右旗| 滦南县|