找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebra and Related Topics with Applications; ICARTA-2019, Aligarh Mohammad Ashraf,Asma Ali,Vincenzo De Filippis Conference proceedings 202

[復(fù)制鏈接]
樓主: 忠誠(chéng)
31#
發(fā)表于 2025-3-26 22:45:00 | 只看該作者
32#
發(fā)表于 2025-3-27 01:32:48 | 只看該作者
33#
發(fā)表于 2025-3-27 07:32:21 | 只看該作者
34#
發(fā)表于 2025-3-27 10:54:54 | 只看該作者
Dimensional Dual Hyperovals—An Updated Survey2006). It describes the initial investigations in this field and covers roughly the period from 1995 to 2005. The present report is an update of this survey and tries to explain relevant developments after 2005.
35#
發(fā)表于 2025-3-27 14:22:19 | 只看該作者
On Certain ,-differential Identities in?Prime Rings with?Involution, if a prime ring with involution . of the second kind with char. admits derivations . and . such that .then either . is commutative or . Apart from proving some other results, we provide some examples to show that the hypotheses imposed on our results are not superfluous.
36#
發(fā)表于 2025-3-27 20:46:52 | 只看該作者
Algebra and Related Topics with Applications978-981-19-3898-6Series ISSN 2194-1009 Series E-ISSN 2194-1017
37#
發(fā)表于 2025-3-28 01:11:34 | 只看該作者
38#
發(fā)表于 2025-3-28 05:28:56 | 只看該作者
Fabio Guarracino,Rubia Baldassarriation . satisfying either of the conditions: (i) ., (ii) ., (iii) ., (iv) ., (v) . and (vi) . for all ., where . is a nonzero semigroup ideal of ., . is a map such that . and .,?. are non-negative integers. Moreover, we give a characterization of these mappings.
39#
發(fā)表于 2025-3-28 07:20:26 | 只看該作者
Tyson A. Fricke,Igor E. Konstantinovnonzero .-generalized skew derivation of ., . a multilinear polynomial over . with . non-commuting variables, and . the set of the evaluations of . on .. If . is not an identity for . and . for all ., then we determine all the possible forms of ..
40#
發(fā)表于 2025-3-28 10:55:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 06:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
台中县| 江源县| 加查县| 阿瓦提县| 鲜城| 榕江县| 资兴市| 汤原县| 新泰市| 武义县| 陈巴尔虎旗| 大港区| 玉山县| 襄垣县| 惠东县| 峡江县| 阿坝| 栾川县| 福海县| 荥经县| 灵石县| 平乐县| 弋阳县| 民县| 耒阳市| 南溪县| 营山县| 岳阳市| 漳州市| 清丰县| 赣州市| 内黄县| 大名县| 卓资县| 巨鹿县| 呼图壁县| 元朗区| 塔城市| 高陵县| 石首市| 积石山|