找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebra and Related Topics with Applications; ICARTA-2019, Aligarh Mohammad Ashraf,Asma Ali,Vincenzo De Filippis Conference proceedings 202

[復(fù)制鏈接]
樓主: 忠誠
31#
發(fā)表于 2025-3-26 22:45:00 | 只看該作者
32#
發(fā)表于 2025-3-27 01:32:48 | 只看該作者
33#
發(fā)表于 2025-3-27 07:32:21 | 只看該作者
34#
發(fā)表于 2025-3-27 10:54:54 | 只看該作者
Dimensional Dual Hyperovals—An Updated Survey2006). It describes the initial investigations in this field and covers roughly the period from 1995 to 2005. The present report is an update of this survey and tries to explain relevant developments after 2005.
35#
發(fā)表于 2025-3-27 14:22:19 | 只看該作者
On Certain ,-differential Identities in?Prime Rings with?Involution, if a prime ring with involution . of the second kind with char. admits derivations . and . such that .then either . is commutative or . Apart from proving some other results, we provide some examples to show that the hypotheses imposed on our results are not superfluous.
36#
發(fā)表于 2025-3-27 20:46:52 | 只看該作者
Algebra and Related Topics with Applications978-981-19-3898-6Series ISSN 2194-1009 Series E-ISSN 2194-1017
37#
發(fā)表于 2025-3-28 01:11:34 | 只看該作者
38#
發(fā)表于 2025-3-28 05:28:56 | 只看該作者
Fabio Guarracino,Rubia Baldassarriation . satisfying either of the conditions: (i) ., (ii) ., (iii) ., (iv) ., (v) . and (vi) . for all ., where . is a nonzero semigroup ideal of ., . is a map such that . and .,?. are non-negative integers. Moreover, we give a characterization of these mappings.
39#
發(fā)表于 2025-3-28 07:20:26 | 只看該作者
Tyson A. Fricke,Igor E. Konstantinovnonzero .-generalized skew derivation of ., . a multilinear polynomial over . with . non-commuting variables, and . the set of the evaluations of . on .. If . is not an identity for . and . for all ., then we determine all the possible forms of ..
40#
發(fā)表于 2025-3-28 10:55:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 10:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
涡阳县| 东阿县| 应城市| 巴塘县| 天台县| 海盐县| 桃园市| 新昌县| 榆树市| 正安县| 射阳县| 读书| 松溪县| 靖宇县| 勃利县| 泾川县| 北京市| 乐山市| 廊坊市| 简阳市| 无为县| 丹巴县| 马公市| 湟源县| 合作市| 金寨县| 长丰县| 扎兰屯市| 嘉善县| 浮梁县| 南郑县| 东城区| 乌苏市| 郯城县| 上林县| 贡觉县| 永寿县| 太原市| 湖州市| 晋州市| 木兰县|