找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebra II Ring Theory; Vol. 2: Ring Theory Carl Faith Book 1976 Springer-Verlag Berlin Heidelberg 1976 Ring.algebra

[復(fù)制鏈接]
樓主: 粘上
31#
發(fā)表于 2025-3-26 21:59:40 | 只看該作者
32#
發(fā)表于 2025-3-27 04:18:55 | 只看該作者
https://doi.org/10.1007/978-3-322-96680-3map . is superfluous if and only if . ? rad . 18.3. A module . is a . (proj. cov.) of . provided that . is projective and there exists a minimal epimorphism .. This notion is dual to that of injective hull, and yet, although each .-module has an injective hull, projective covers of modules may fail
33#
發(fā)表于 2025-3-27 06:02:26 | 只看該作者
https://doi.org/10.1007/978-3-663-13621-7tely presented left module over a ring . is a direct sum of uniserial modules: this happens iff . is itself such a direct sum both as right and left module, that is, iff . is serial. (See Section 0 for definitions.) In this case, then for any finitely generated submodule . of a finitely generated pr
34#
發(fā)表于 2025-3-27 12:27:31 | 只看該作者
35#
發(fā)表于 2025-3-27 17:10:45 | 只看該作者
36#
發(fā)表于 2025-3-27 19:26:36 | 只看該作者
Modules of Finite Length and their Endomorphism Ringsrem 17.7; (4) Fitting’s lemma 17.16; (5) theorems of K?the-Levitzki and Kolchin on putting matrices simultaneously in triangular form 17.19 and 17.30; and (6) nilpotency of nil submonoids of monoids satisfying various chain conditions 17.19–25.
37#
發(fā)表于 2025-3-28 00:51:58 | 只看該作者
Semilocal Rings and the Jacobson Radicalcal of a ring; (3) local rings 18.10; (4) semiprimary rings 18.12; (5) the theorem of Hopkins and Levitzki 18.13; (6) the Krull-Schmidt or Unique Decomposition Theorem 18.18; (7) the basic module and ring 18.21–23; (8) the Chinese remainder theorem 18.30–32 and primary decomposable rings 18.36–37; a
38#
發(fā)表于 2025-3-28 04:26:41 | 只看該作者
Quasinjective Modules and Selfinjective Ringsle which is injective modulo annihilator, and every semisimple module, is QI (see 19.2). The QI modules coincide with the class of fully invariant sub-modules of injective modules 19.3. A module which is finitely generated over endomorphism ring is said to be . Any finendo QI module is injective mod
39#
發(fā)表于 2025-3-28 09:31:26 | 只看該作者
40#
發(fā)表于 2025-3-28 11:34:39 | 只看該作者
Projective Covers and Perfect Ringsmap . is superfluous if and only if . ? rad . 18.3. A module . is a . (proj. cov.) of . provided that . is projective and there exists a minimal epimorphism .. This notion is dual to that of injective hull, and yet, although each .-module has an injective hull, projective covers of modules may fail
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-26 01:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
柘荣县| 永州市| 凤庆县| 贡觉县| 汶上县| 汉川市| 濮阳市| 池州市| 林口县| 昔阳县| 丽水市| 木兰县| 米林县| 新干县| 鄂伦春自治旗| 乌鲁木齐县| 顺平县| 香格里拉县| 定安县| 响水县| 敦煌市| 谷城县| 西青区| 扶沟县| 昌黎县| 江陵县| 兰州市| 渑池县| 眉山市| 河北省| 财经| 新宁县| 天等县| 丰原市| 荆门市| 利津县| 突泉县| 商河县| 武汉市| 泽库县| 宽城|