找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebra I; Textbook for Student Alexey L. Gorodentsev Textbook 2016 Springer International Publishing AG 2016 Fields.Rings.Modules.Groups.L

[復(fù)制鏈接]
樓主: 大口水罐
51#
發(fā)表于 2025-3-30 09:58:38 | 只看該作者
52#
發(fā)表于 2025-3-30 13:08:54 | 只看該作者
53#
發(fā)表于 2025-3-30 18:35:20 | 只看該作者
54#
發(fā)表于 2025-3-30 23:36:16 | 只看該作者
55#
發(fā)表于 2025-3-31 04:34:18 | 只看該作者
56#
發(fā)表于 2025-3-31 06:36:15 | 只看該作者
Duality, .. We have seen in Sect.?. on p.?136 that every linear map is uniquely determined by its values on an arbitrarily chosen basis. In particular, every covector .?∈?.. is uniquely determined by numbers . as . runs trough some basis of .. The next lemma is a particular case of Proposition?. on p.?137.
57#
發(fā)表于 2025-3-31 12:46:16 | 只看該作者
58#
發(fā)表于 2025-3-31 15:24:36 | 只看該作者
Euclidean Spaces,=?(.,?.) for all .,?.?∈?., (.,?.)?>?0 for all . ≠ 0, and . for all . and all ..,?..,?..,?..?∈?.. The first condition is called ., the second, ., and the third, .. A real vector space . equipped with an inner product is called a . vector space. An inner product on a Euclidean space is also called a .
59#
發(fā)表于 2025-3-31 20:12:28 | 只看該作者
60#
發(fā)表于 2025-4-1 00:07:15 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-26 19:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
万载县| 宁强县| 嘉黎县| 苍山县| 永丰县| 嘉义市| 金昌市| 菏泽市| 绥江县| 扶余县| 盖州市| 梁河县| 怀安县| 监利县| 南木林县| 永丰县| 沂南县| 荆门市| 蒙自县| 克拉玛依市| 获嘉县| 株洲市| 昌邑市| 昭平县| 桂东县| 浠水县| 临清市| 黑水县| 仲巴县| 离岛区| 礼泉县| 华蓥市| 扬中市| 方山县| 大城县| 庄浪县| 合阳县| 绵竹市| 临沭县| 新竹市| 淅川县|