找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebra 1; Groups, Rings, Field Ramji Lal Textbook 2017 Springer Nature Singapore Pte Ltd. 2017 Algebra.Number System.Group Theory.Arithmet

[復(fù)制鏈接]
樓主: 威風(fēng)
21#
發(fā)表于 2025-3-25 06:43:45 | 只看該作者
22#
發(fā)表于 2025-3-25 07:44:12 | 只看該作者
Entity Relationship - Modellierung,This chapter is devoted to the study of rings in relation to their arithmetical properties.
23#
發(fā)表于 2025-3-25 13:23:36 | 只看該作者
24#
發(fā)表于 2025-3-25 18:25:59 | 只看該作者
Number System,This is the first introduction to arithmetic in which we develop number systems (including real number system and complex number system) starting from the Peano’s axiom. We also discuss linear diophantine equation and linear congruences.
25#
發(fā)表于 2025-3-25 22:11:22 | 只看該作者
Group Theory,One of the most fundamental concepts in mathematics today is that of a group. This present chapter concerns the basic introduction to groups.
26#
發(fā)表于 2025-3-26 00:21:08 | 只看該作者
Fundamental Theorems,This chapter is devoted to some fundamental theorems such as Lagrange Theorem and Isomorphism Theorems. We also discuss the direct decomposition of groups into indecomposable groups.
27#
發(fā)表于 2025-3-26 06:17:41 | 只看該作者
Permutation Groups and Classical Groups,The two main sources of groups are the permutation groups and the matrix groups. This chapter is devoted to introduce these groups, and to study some of their fundamental and elementary properties.
28#
發(fā)表于 2025-3-26 09:23:31 | 只看該作者
Elementary Theory of Rings and Fields,Ring is an important algebraic structure with two compatible binary operations whose intrinsic presence in almost every discipline of mathematics is frequently noticed. The theory of rings, in the beginning, will be developed on the pattern the theory of groups was developed.
29#
發(fā)表于 2025-3-26 14:18:24 | 只看該作者
30#
發(fā)表于 2025-3-26 19:15:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-25 15:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
长岛县| 新民市| 荔波县| 赤峰市| 从化市| 五常市| 滨海县| 定陶县| 通许县| 宣武区| 克拉玛依市| 竹山县| 民乐县| 乃东县| 五华县| 浠水县| 葫芦岛市| 上杭县| 科技| 耒阳市| 罗山县| 福鼎市| 合山市| 双城市| 双流县| 抚州市| 昌邑市| 蒙山县| 班戈县| 西平县| 曲靖市| 灌南县| 关岭| 浠水县| 金阳县| 上虞市| 南京市| 神木县| 肇庆市| 新绛县| 丽水市|