找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebra; Rings, Modules and C Carl Faith Book 1973 Springer-Verlag, Berlin · Heidelberg 1973 Autodesk Maya.Coproduct.Kategorie.Modul.algebr

[復(fù)制鏈接]
樓主: Croching
41#
發(fā)表于 2025-3-28 14:42:36 | 只看該作者
Somaclonal Variation in Date Palm of the Picard group Pic (mod-.) of all .-linear auto-equivalences of mod-. for an arbitrary algebra ., and also (in Exercises for Chapter 12, and in Chapter 32) of the Brauer group of a commutative ring .
42#
發(fā)表于 2025-3-28 20:19:27 | 只看該作者
A. El Hadrami,F. Daayf,I. El Hadramitheorems for a finite dimensional algebras . over an algebraically closed field . If . has no nilpotent ideals ≠ 0, then . is a finite product of total matrix algebras over . In this case, the set . (.) of degrees of the total matrix algebras is a complete set of invariants of . Thus, 13.7 two finit
43#
發(fā)表于 2025-3-29 01:11:36 | 只看該作者
44#
發(fā)表于 2025-3-29 05:25:15 | 只看該作者
Noetherian Semiprime Ringsand sufficient for a ring . to possess a classical quotient ring: If ., . ∈ ., and if . is regular, then there exist .., .. ∈ ., .. regular, such that ..= .. (see 9.1). If . is commutative, this condition is automatic, and if . is a domain, this is the Ore condition.
45#
發(fā)表于 2025-3-29 10:10:41 | 只看該作者
46#
發(fā)表于 2025-3-29 15:23:42 | 只看該作者
Morita Theorems and the Picard Group of the Picard group Pic (mod-.) of all .-linear auto-equivalences of mod-. for an arbitrary algebra ., and also (in Exercises for Chapter 12, and in Chapter 32) of the Brauer group of a commutative ring .
47#
發(fā)表于 2025-3-29 17:25:04 | 只看該作者
48#
發(fā)表于 2025-3-29 19:58:32 | 只看該作者
Big Data und die Frage nach der AnerkennungThe concepts introduced and explored in this chapter are so fundamental that scarcely any of them can be dispensed with hereafter.
49#
發(fā)表于 2025-3-29 23:53:22 | 只看該作者
50#
發(fā)表于 2025-3-30 07:51:34 | 只看該作者
https://doi.org/10.1007/978-94-007-1318-5Grothendieck [57] introduced the notation for abelian categories which follows:
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 05:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
都江堰市| 偏关县| 田东县| 延川县| 马关县| 孙吴县| 平塘县| 德江县| 稻城县| 师宗县| 凤凰县| 毕节市| 西青区| 通渭县| 垣曲县| 疏勒县| 东莞市| 江阴市| 呼和浩特市| 涿鹿县| 麻江县| 通河县| 陇南市| 南皮县| 甘孜县| 鄂托克旗| 同德县| 宁安市| 泽库县| 本溪市| 南安市| 麟游县| 吉安县| 道孚县| 德庆县| 井陉县| 福建省| 保靖县| 随州市| 遵化市| 昌吉市|