找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

123456
返回列表
打印 上一主題 下一主題

Titlebook: Algebra; Some Recent Advances I. B. S. Passi Book 1999 Hindustan Book Agency (India) and Indian National Science Academy 1999 Area.Volume.a

[復(fù)制鏈接]
樓主: 悲傷我
51#
發(fā)表于 2025-3-30 09:48:11 | 只看該作者
Alternative Loop Rings and Related Topics,, see Definition 3.1). The . of . over . was introduced in 1944 by R.H. Bruck (1944) as a means to obtain a family of examples of nonassociative algebras and is defined in a way similar to that of a group algebra; i.e., as the free A-module with basis ., with a multiplication induced distributively from the operation in .
52#
發(fā)表于 2025-3-30 15:20:52 | 只看該作者
Md Musfique Anwar,Jianxin Li,Chengfei Liu(1981) gives some later developments (see also the books of Sehgal, 1989 and Karpilovsky, 1989). In this article our main aim is to survey the more recent developments. In § 1 we review the case when . is a field and in §2 the case of the integral group ring is considered.
53#
發(fā)表于 2025-3-30 16:53:17 | 只看該作者
Xiu Susie Fang,Xianzhi Wang,Quan Z. Shenger fields, a main step in the proof of these conjectures is a classification theorem of hermitian forms over involutorial division algebras defined over fields of virtual cohomological dimension ≤ 2, which is described in § 6 and § 7.
54#
發(fā)表于 2025-3-30 21:10:59 | 只看該作者
Lei Li,Xiaofang Zhou,Kevin Zhengtally, to the construction in ([PI]) of non diagonalisable, (in fact indecomposable), non singular symmetric 4 × 4 matrices of determinant one over the polynomial ring in two variables over the field of real numbers, producing remarkable counter examples to the so called quadratic analogue of Serre’
55#
發(fā)表于 2025-3-31 01:29:11 | 只看該作者
Unit Groups of Group Rings,(1981) gives some later developments (see also the books of Sehgal, 1989 and Karpilovsky, 1989). In this article our main aim is to survey the more recent developments. In § 1 we review the case when . is a field and in §2 the case of the integral group ring is considered.
56#
發(fā)表于 2025-3-31 05:59:41 | 只看該作者
57#
發(fā)表于 2025-3-31 09:28:12 | 只看該作者
58#
發(fā)表于 2025-3-31 15:55:50 | 只看該作者
10樓
59#
發(fā)表于 2025-3-31 20:43:52 | 只看該作者
10樓
123456
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 15:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
邢台市| 新巴尔虎左旗| 蕉岭县| 海口市| 茶陵县| 钦州市| 南投县| 平阳县| 庄河市| 利川市| 京山县| 韩城市| 来宾市| 华蓥市| 隆安县| 鞍山市| 石棉县| 敦煌市| 五原县| 明光市| 且末县| 商河县| 十堰市| 句容市| 云霄县| 屯门区| 湟源县| 通海县| 永吉县| 盐城市| 武山县| 黎城县| 怀柔区| 招远市| 花莲县| 湘乡市| 江孜县| 大足县| 闸北区| 深圳市| 武夷山市|