找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebra; An Approach via Modu William A. Adkins,Steven H. Weintraub Textbook 1992 Springer Science+Business Media New York 1992 Permutatio

[復(fù)制鏈接]
11#
發(fā)表于 2025-3-23 13:02:02 | 只看該作者
Groups,In this chapter we introduce groups and prove some of the basic theorems in group theory. One of these, the structure theorem for finitely generated abelian groups, we do not prove here but instead derive it as a corollary of the more general structure theorem for finitely generated modules over a PID (see Theorem 3.7.22).
12#
發(fā)表于 2025-3-23 13:51:44 | 只看該作者
Rings,(1.1) Definition. . ring (.,+,) . +: . ×.→. (.) . : . ×.→. (.) ..
13#
發(fā)表于 2025-3-23 21:47:07 | 只看該作者
14#
發(fā)表于 2025-3-23 23:50:03 | 只看該作者
15#
發(fā)表于 2025-3-24 05:28:55 | 只看該作者
Group Representations,We begin by defining the objects that we are interested in studying. Recall that if . is a ring and . is a group, then .(.) denotes the group ring of . with coefficients from .. The multiplication on .(.) is the convolution product (see Example 2.1.10 (15)).
16#
發(fā)表于 2025-3-24 06:47:34 | 只看該作者
Graduate Texts in Mathematicshttp://image.papertrans.cn/a/image/152413.jpg
17#
發(fā)表于 2025-3-24 11:20:00 | 只看該作者
Algebra978-1-4612-0923-2Series ISSN 0072-5285 Series E-ISSN 2197-5612
18#
發(fā)表于 2025-3-24 15:37:58 | 只看該作者
Linear Algebra,al form theory for a linear transformation from a vector space to itself. The fundamental results will be presented in Section 4.4. We will start with a rather detailed introduction to the elementary aspects of matrix algebra, including the theory of determinants and matrix representation of linear
19#
發(fā)表于 2025-3-24 21:37:20 | 只看該作者
Matrices over PIDs,y if the .[.]-modules . and . are isomorphic (Theorem 4.4.2). Since the structure theorem for finitely generated torsion .[.]-modules gives a criterion for isomorphism in terms of the invariant factors (or elementary divisors), one has a powerful tool for studying linear transformations, up to simil
20#
發(fā)表于 2025-3-25 02:29:14 | 只看該作者
Bilinear and Quadratic Forms, means of the operations (.+.)(.)=.(.)+.(.) and (.)(.)= .(.(.)) for all .. Moreover, if . then Hom.(.)= End .(.) is a ring under the multiplication (.)(.)=.(.(.)). An .-module ., which is also a ring, is called an .-algebra if it satisfies the extra axiom .(.)=(.).=.(.) for all . ∈ . and . ∈ .. Thus
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 13:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
三台县| 普安县| 阳山县| 佛山市| 和静县| 大丰市| 泸州市| 都安| 慈利县| 东丰县| 龙岩市| 赤城县| 荔波县| 栾川县| 沙田区| 建水县| 辽宁省| 晴隆县| 玉环县| 建水县| 威宁| 册亨县| 晋城| 肥东县| 华容县| 瑞丽市| 闻喜县| 依安县| 沭阳县| 永年县| 海安县| 石景山区| 罗江县| 五家渠市| 霞浦县| 陵水| 安吉县| 青神县| 沙湾县| 舒兰市| 嘉禾县|