找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebra; Gruppen – Ringe – K? Daniel Plaumann Textbook 2023 Der/die Herausgeber bzw. der/die Autor(en), exklusiv lizenziert an Springer-Ver

[復(fù)制鏈接]
樓主: Agitated
31#
發(fā)表于 2025-3-26 23:18:26 | 只看該作者
as Layout mit vielen Randbemerkungen tragen dazu bei, den Text auf das Wesentliche zu konzentrieren und trotzdem Raum für Anregungen und historische Zusammenh?nge zu lassen. Der Text wird in regelm??igen Abst?nden von kurzen Aufgaben unterbrochen und ist dadurch auch für das Selbststudium besonders geeignet..978-3-662-67242-6978-3-662-67243-3
32#
發(fā)表于 2025-3-27 03:00:03 | 只看該作者
n Ausblicken.Enth?lt zu jedem Kapitel Aufgaben zur Einübung .Dieses Lese- und Lernbuch vermittelt ein lebendiges Bild der Algebra und stellt sie kompakt und verst?ndlich dar. Es ist sowohl für das Fachstudium als auch das gymnasiale Lehramtsstudium gedacht..?.Im Zentrum stehen die algebraischen Stru
33#
發(fā)表于 2025-3-27 09:10:36 | 只看該作者
Textbook 2023ls auch das gymnasiale Lehramtsstudium gedacht..?.Im Zentrum stehen die algebraischen Strukturen der Gruppen, Ringe und K?rper und ihre Bedeutung für das L?sen von Gleichungen, die Galoistheorie und die algebraische Zahlentheorie. Diese Anwendungen helfen auch dabei, das Dickicht an Begriffen und Ab
34#
發(fā)表于 2025-3-27 10:14:17 | 只看該作者
Textbook 2023xt auf das Wesentliche zu konzentrieren und trotzdem Raum für Anregungen und historische Zusammenh?nge zu lassen. Der Text wird in regelm??igen Abst?nden von kurzen Aufgaben unterbrochen und ist dadurch auch für das Selbststudium besonders geeignet..
35#
發(fā)表于 2025-3-27 14:58:09 | 只看該作者
36#
發(fā)表于 2025-3-27 18:08:18 | 只看該作者
37#
發(fā)表于 2025-3-27 22:08:29 | 只看該作者
38#
發(fā)表于 2025-3-28 04:32:23 | 只看該作者
,Algebraische K?rpererweiterungen,stimmte Polynome Nullstellen besitzen oder in Linearfaktoren zerfallen, und ihre Struktur untersucht. Au?erdem werden die endlichen K?rper vollst?ndig bestimmt. In Exkursen geht es um algebraische und transzendente Zahlen sowie um die Konstruktion des algebraischen Abschlusses.
39#
發(fā)表于 2025-3-28 09:21:51 | 只看該作者
Galoistheorie,werden die grundlegenden Aussagen bis zum Hauptsatz der Galoistheorie bewiesen und als Anwendung die Kreisteilungsk?rper sowie die berühmten S?tze über die Nichtaufl?sbarkeit der allgemeinen Gleichung vom Grad 5 pr?sentiert. In einem Exkurs wird ein Beweis des Fundamentalsatzes der Algebra gegeben.
40#
發(fā)表于 2025-3-28 11:43:18 | 只看該作者
Moduln,eits die abelschen Gruppen und andererseits die Vektorr?ume beinhalten. Ihre Theorie hat Anwendungen auf lineare Gleichungssysteme über solchen Ringen und die Struktur von linearen Abbildungen auf Vektorr?umen. Zum Abschluss werden die noetherschen Ringe eingeführt, die vor allem für die algebraisch
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-30 02:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
米易县| 乐山市| 奉化市| 宿州市| 平山县| 德阳市| 渑池县| 大埔区| 滦平县| 保靖县| 万盛区| 宁国市| 竹溪县| 镇康县| 沂水县| 五大连池市| 禹城市| 浮山县| 忻州市| 新绛县| 昌平区| 海兴县| 微山县| 玉环县| 香港| 新郑市| 彰武县| SHOW| 兴义市| 衡山县| 平泉县| 修文县| 遂川县| 新民市| 巍山| 汝州市| 华宁县| 博野县| 凯里市| 彩票| 灵石县|