找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

123456
返回列表
打印 上一主題 下一主題

Titlebook: Alfred Tarski; Early Work in Poland Andrew McFarland,Joanna McFarland,James T. Smith Book 2014 Springer Science+Business Media New York 201

[復(fù)制鏈接]
樓主: Osteopenia
51#
發(fā)表于 2025-3-30 09:59:51 | 只看該作者
Doctoral Researchof Warsaw, and various other aspects of his life during 1921–1924. These include some personal details, his parttime employment as a teacher during his student years, his doctoral research, and his early participation in professional meetings. It provides a setting for both the detailed mathematics
52#
發(fā)表于 2025-3-30 13:37:30 | 只看該作者
Area, Volume, Measureal region . is computed by decomposing . into a finite number of polygonal components with disjoint interiors, which can be reassembled to form a rectangle . with unit base: . is then the altitude of .. The volume of a polyhedral region can be reckoned in a similar way, but for that it is necessary
53#
發(fā)表于 2025-3-30 18:31:49 | 只看該作者
(1924). This is its first translation. Its best-known result is often called the .: any two balls with different radii can be decomposed into the same finite number of disjoint, respectively congruent parts.
54#
發(fā)表于 2025-3-31 00:00:00 | 只看該作者
55#
發(fā)表于 2025-3-31 00:55:29 | 只看該作者
56#
發(fā)表于 2025-3-31 06:02:42 | 只看該作者
Career and Family background for that activity, and for all of Tarski’s publications that stemmed from it. The first of those is translated in chapter 10: his [1929] 2014a report to secondary teachers about the First Congress of Mathematicians of Slavic Countries, held in 1929 in Warsaw.
123456
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 00:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新竹县| 高唐县| 中山市| 方山县| 开封市| 仁怀市| 华坪县| 南靖县| 新安县| 修水县| 丰原市| 璧山县| 金坛市| 比如县| 宁阳县| 恭城| 茶陵县| 新泰市| 马公市| 安塞县| 元阳县| 庆云县| 呼玛县| 柘城县| 开鲁县| 张家口市| 新乐市| 辽阳县| 广元市| 资溪县| 尼木县| 台东市| 连江县| 年辖:市辖区| 荣昌县| 云阳县| 富裕县| 和政县| 邯郸市| 长沙市| 方城县|