找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Age-Structured Population Dynamics in Demography and Epidemiology; Hisashi Inaba Book 2017 Springer Science+Business Media Singapore 2017

[復(fù)制鏈接]
樓主: firearm
21#
發(fā)表于 2025-3-25 03:35:16 | 只看該作者
22#
發(fā)表于 2025-3-25 10:07:03 | 只看該作者
23#
發(fā)表于 2025-3-25 15:12:31 | 只看該作者
24#
發(fā)表于 2025-3-25 19:26:13 | 只看該作者
Classical Limits and Critical Propertiesonlinear demographic theory. Temporary or persistent pair formation also plays an important role in understanding the spread of sexually transmitted diseases, so there are a number of studies about pair formation phenomena in the context of epidemic models. In this chapter, however, we focus on pure
25#
發(fā)表于 2025-3-25 21:59:28 | 只看該作者
Critical Phenomena in 3 DimensionsKermack and McKendrick, although there are slightly different definition for the final size. We then extend the original model to account for the heterogeneity of individuals and derive the pandemic threshold theorem. Subsequently, we introduce the demography of the host population and prove the end
26#
發(fā)表于 2025-3-26 01:36:16 | 只看該作者
27#
發(fā)表于 2025-3-26 07:57:05 | 只看該作者
Semi-infinite critical systems,sic properties. The potential importance of the Kermack–McKendrick reinfection model is that it can take into account variable susceptibility and reinfection, and will thus be a useful starting point in considering the epidemiological life history of individuals. The Pease influenza model can be see
28#
發(fā)表于 2025-3-26 11:56:43 | 只看該作者
Springer Tracts in Modern Physicsr has been developed as a central tenet of both infectious disease epidemiology and general population dynamics. Recently, this basic idea has evolved considerably to allow its application to time-heterogeneous environments. In this chapter, we sketch a general theory of .. First, we formulate a gen
29#
發(fā)表于 2025-3-26 14:12:21 | 只看該作者
Age-Structured Population Dynamics in Demography and Epidemiology
30#
發(fā)表于 2025-3-26 19:01:08 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 10:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南康市| 垫江县| 武安市| 宁远县| 潜山县| 司法| 玉溪市| 砀山县| 淳化县| 南召县| 九龙城区| 南木林县| 同江市| 黄龙县| 盘山县| 南平市| 资源县| 弥勒县| 南和县| 鱼台县| 普定县| 白银市| 灵丘县| 巴林右旗| 永春县| 嘉鱼县| 会东县| 宁强县| 桐梓县| 四川省| 上饶市| 新密市| 龙南县| 清徐县| 岳普湖县| 曲沃县| 高平市| 嘉鱼县| 广饶县| 湘西| 琼海市|