找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Affine Maps, Euclidean Motions and Quadrics; Agustí Reventós Tarrida Textbook 2011 Springer-Verlag London Limited 2011 affine geometry.bil

[復(fù)制鏈接]
樓主: Fibromyalgia
11#
發(fā)表于 2025-3-23 09:44:27 | 只看該作者
Eco-Efficiency in Industry and ScienceIn this chapter we study Euclidean motions in dimension 1, 2 and?3. For instance, in dimension three there are only three types of Euclidean motions: . (that include rotations, translations and the identity), . (that include mirror symmetries) and ...The subsections are
12#
發(fā)表于 2025-3-23 16:28:20 | 只看該作者
Euclidean Affine Spaces,In this chapter we consider affine spaces on which a distance has been defined. Thus we have a model of classical Euclidean Geometry, where, for instance, Pythagoras’ Theorem works well. We give a short method to compute the distance between two varieties of arbitrary dimension..The subsections are
13#
發(fā)表于 2025-3-23 18:11:31 | 只看該作者
14#
發(fā)表于 2025-3-24 00:28:44 | 只看該作者
Agustí Reventós TarridaThorough treatment of affine geometry and quadrics.A useful resource for lecturers in linear algebra and geometry.Provides an high level of detail and generality that is unmatched by other texts avail
15#
發(fā)表于 2025-3-24 06:10:10 | 只看該作者
16#
發(fā)表于 2025-3-24 08:11:29 | 只看該作者
17#
發(fā)表于 2025-3-24 14:30:26 | 只看該作者
18#
發(fā)表于 2025-3-24 18:13:17 | 只看該作者
19#
發(fā)表于 2025-3-24 20:08:41 | 只看該作者
20#
發(fā)表于 2025-3-24 23:58:35 | 只看該作者
J?rg E. U. Schmidt,Claus-Heinrich Daubind it in specialist literature. We prove essentially the same result that in the above chapter: Two affine maps are similar if and only if the corresponding linear part are similar and the corresponding invariance level are equal..The subsections are
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 10:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
广南县| 抚宁县| 特克斯县| 甘谷县| 宽甸| 清原| 绍兴县| 梅州市| 玉龙| 广河县| 孟州市| 庄河市| 荔波县| 公主岭市| 屯留县| 台江县| 祁阳县| 苏尼特左旗| 巴中市| 高唐县| 哈巴河县| 武宁县| 石渠县| 金秀| 鄱阳县| 赫章县| 阳曲县| 驻马店市| 麻阳| 龙门县| 巫山县| 呼玛县| 富平县| 寿光市| 耒阳市| 潼关县| 叶城县| 共和县| 奎屯市| 丹棱县| 嘉黎县|