找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Adversarial Machine Learning; Yevgeniy Vorobeychik,Murat Kantarcioglu Book 2018 Springer Nature Switzerland AG 2018

[復(fù)制鏈接]
31#
發(fā)表于 2025-3-27 00:18:21 | 只看該作者
Categories of Attacks on Machine Learning,ulnerabilities centers around precise threat models. In this chapter, we present a general categorization of threat models, or attacks, in the context of machine learning. Our subsequent detailed presentation of the specific attacks will be grounded in this categorization.
32#
發(fā)表于 2025-3-27 02:06:25 | 只看該作者
33#
發(fā)表于 2025-3-27 06:47:01 | 只看該作者
34#
發(fā)表于 2025-3-27 10:52:37 | 只看該作者
Attacks at Decision Time, spam, phishing, and malware detectors trained to distinguish between benign and malicious instances, with adversaries manipulating the nature of the objects, such as introducing clever word misspellings or substitutions of code regions, in order to be misclassified as benign.
35#
發(fā)表于 2025-3-27 14:27:05 | 只看該作者
Defending Against Decision-Time Attacks,follow-up question: how do we defend against such attacks? As most of the literature on robust learning in the presence of decision-time attacks is focused on supervised learning, our discussion will be restricted to this setting. Additionally, we deal with an important special case of such attacks
36#
發(fā)表于 2025-3-27 18:05:06 | 只看該作者
Data Poisoning Attacks,they take place . learning, when the learned model is in operational use. We now turn to another broad class of attacks which target the learning . by tampering directly with data used for training these.
37#
發(fā)表于 2025-3-27 23:10:52 | 只看該作者
38#
發(fā)表于 2025-3-28 05:35:52 | 只看該作者
Attacking and Defending Deep Learning,natural language processing [Goodfellow et al., 2016]. This splash was soon followed by a series of illustrations of fragility of deep neural network models to small . changes to inputs. While initially these were seen largely as robustness tests rather than modeling actual attacks, the language of
39#
發(fā)表于 2025-3-28 08:55:14 | 只看該作者
40#
發(fā)表于 2025-3-28 13:46:36 | 只看該作者
1939-4608 ontent of malicius objects they develop...The field of adversarial machine learning has emerged to study vulnerabilities of machine learning approaches in adver978-3-031-00452-0978-3-031-01580-9Series ISSN 1939-4608 Series E-ISSN 1939-4616
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 15:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宁武县| 康马县| 玛多县| 灵川县| 祁连县| 弥渡县| 阿合奇县| 台北市| 长沙市| 合山市| 江西省| 洪雅县| 石嘴山市| 勐海县| 车险| 邵阳县| 桐乡市| 江门市| 乌兰浩特市| 隆化县| 陵川县| 曲阜市| 雷山县| 屏东市| 德令哈市| 句容市| 兴业县| 澄江县| 岳池县| 西昌市| 镇康县| 乐山市| 吉安县| 上思县| 内黄县| 南雄市| 乐安县| 晋城| 芮城县| 突泉县| 扎兰屯市|