找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances on Fractional Inequalities; George A. Anastassiou Book 2011 George A. Anastassiou 2011 Caputo fractional derivative.Fractional Ca

[復(fù)制鏈接]
查看: 39731|回復(fù): 49
樓主
發(fā)表于 2025-3-21 16:56:14 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Advances on Fractional Inequalities
影響因子2023George A. Anastassiou
視頻videohttp://file.papertrans.cn/151/150303/150303.mp4
發(fā)行地址Use primarily the Caputo fractional derivative, as the most important in applications, and we present first fractional differentiation inequalities of Opial type where we involve the so called balance
學(xué)科分類SpringerBriefs in Mathematics
圖書封面Titlebook: Advances on Fractional Inequalities;  George A. Anastassiou Book 2011 George A. Anastassiou 2011 Caputo fractional derivative.Fractional Ca
影響因子.Advances on Fractional Inequalities ?use primarily the Caputo fractional derivative, as the most important in applications, and presents the first fractional differentiation inequalities of Opial type which ?involves the balanced fractional derivatives. The book continues with right and mixed fractional differentiation Ostrowski inequalities in the univariate and multivariate cases. Next the right and left, as well as mixed, Landau fractional differentiation inequalities in the univariate and multivariate cases are illustrated. Throughout the book many applications are given. .Fractional differentiation inequalities are by themselves an important and great mathematical topic for research. Furthermore they have many applications, the most important ones are in establishing uniqueness of solution in fractional differential equations and systems and in fractional partial differential equations. Also they provide upper bounds to the solutions of the above equations..Fractional Calculus has emerged as very useful over the last forty years due to its many applications in almost all applied sciences. This is currently seen in applications in acoustic wave propagation in inhomogeneous por
Pindex Book 2011
The information of publication is updating

書目名稱Advances on Fractional Inequalities影響因子(影響力)




書目名稱Advances on Fractional Inequalities影響因子(影響力)學(xué)科排名




書目名稱Advances on Fractional Inequalities網(wǎng)絡(luò)公開度




書目名稱Advances on Fractional Inequalities網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Advances on Fractional Inequalities被引頻次




書目名稱Advances on Fractional Inequalities被引頻次學(xué)科排名




書目名稱Advances on Fractional Inequalities年度引用




書目名稱Advances on Fractional Inequalities年度引用學(xué)科排名




書目名稱Advances on Fractional Inequalities讀者反饋




書目名稱Advances on Fractional Inequalities讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:15:51 | 只看該作者
Book 2011actional differentiation inequalities of Opial type which ?involves the balanced fractional derivatives. The book continues with right and mixed fractional differentiation Ostrowski inequalities in the univariate and multivariate cases. Next the right and left, as well as mixed, Landau fractional di
板凳
發(fā)表于 2025-3-22 02:15:01 | 只看該作者
2191-8198 alculus has emerged as very useful over the last forty years due to its many applications in almost all applied sciences. This is currently seen in applications in acoustic wave propagation in inhomogeneous por978-1-4614-0702-7978-1-4614-0703-4Series ISSN 2191-8198 Series E-ISSN 2191-8201
地板
發(fā)表于 2025-3-22 08:29:00 | 只看該作者
Opial-Type Inequalities for Balanced Fractional Derivatives,
5#
發(fā)表于 2025-3-22 11:00:24 | 只看該作者
6#
發(fā)表于 2025-3-22 15:44:16 | 只看該作者
7#
發(fā)表于 2025-3-22 18:38:59 | 只看該作者
8#
發(fā)表于 2025-3-23 00:32:31 | 只看該作者
Multivariate Radial Mixed Fractional Ostrowski Inequalities,
9#
發(fā)表于 2025-3-23 02:02:04 | 只看該作者
Shell Mixed Caputo Fractional Ostrowski Inequalities,
10#
發(fā)表于 2025-3-23 07:16:21 | 只看該作者
Left Caputo Fractional Uniform Landau Inequalities,
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 13:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永康市| 旺苍县| 保亭| 龙里县| 洮南市| 开封市| 新龙县| 湖北省| 通城县| 灵石县| 内江市| 梁河县| 灌南县| 凤庆县| 正安县| 葫芦岛市| 蛟河市| 丁青县| 吐鲁番市| 南郑县| 徐汇区| 湖口县| 梁河县| 邳州市| 济源市| 平罗县| 石家庄市| 封开县| 彭水| 景泰县| 右玉县| 湄潭县| 隆安县| 镇远县| 聂拉木县| 西宁市| 阿坝| 贵南县| 日土县| 泌阳县| 哈尔滨市|